

XML
Hand Book

Dr. John T Mesia Dhas

Dr. T. S. Shiny Angel

The Palm Series

XML
Hand Book

Dr. John T Mesia Dhas

Dr. T. S. Shiny Angel

The Palm Series

Title: XML Hand Book

Author: Dr. John T Mesia Dhas, Dr. T. S. Shiny Angel

Publisher: Self-published by Dr. John T Mesia Dhas

Copyright © 2022 Dr. John T Mesia Dhas

All rights reserved, including the right of reproduction in whole or in part or any

form

Address of Publisher: No-1, MGR Street, Charles Nagar, Pattabiram

Chennai – 600072

India

Email: jtmdhasres@gmail.com

Printer: The Palm

 Mogappair West

 Chennai -600037

 India

ISBN:

Chapter Content Page

INTRODUCTION

1 1.1 Background 1

1.2 Characteristics 1

1.3 XML Usage 2

1.4 Industries Using XML 2

1.5 Advantages of XML over SGML 2

1.6 Advantages of XML over HTML 3

1.7 Advantages of XML over EDI 4

1.8 Advantages of XML over Databases and Flat Files 6

1.9 Drawbacks to XML 6

1.10 Application Areas of XML 7

1.11 Features and Advantages of XML 9

1.12 XML Related Technologies 10

COMPONENTS OF XML

2 2.1 XML Document Structure 13

2.2 XML Declaration / PROLOG 14

2.3 Comment 15

2.4 Document Type Declaration (DOCTYPE) 16

2.5 XML Elements 17

2.6 Attributes 19

2.7 Entity References 20

2.8 XML Text 22

2.9 Processing Instructions 23

2.10 Well Formed XML Documents 24

XML NAMESPACES

3 3.1 Name Conflicts 27

3.2 Solving the Name Conflict Using a Prefix 28

3.3 Solving Name Conflict Using Namespace Declaration 28

3.4 Scope of Namespace 30

3.5 Naming Namespaces 30

3.6 Default Namespaces 31

3.7 Declaring More Than One Namespace 31

3.8 Invalid Namespace 32

3.9. Undeclaring Namespace Mapping 32

URL, URI, and URN

4 4.1 Uniform Resource Locator (URL) 34

 4.2 Uniform Resource Identifier (URI) 34

 4.3 Universal Resource Name (URN) 34

4.4 XML 1.1 New Features 35

DOCUMENT TYPE DEFINITION

5 5.1 Validating XML Documents 37

5.2 Well Formed VS Valid XML Documents 37

5.3 DTD (Document Type Definition) 37

5.4 DOCTYPE (Document Type Declaration) 38

5.5 Types Of DTD 38

5.6 DTD Entity Types 57

5.7 XML Conditional DTD Sections 59

5.8 Limitation of DTD 60

Chapter Content Page

SCHEMA

6 6.1 XML Schema 62

6.2 Why to Use XML Schema Instead of DTD? 62

6.3 Creating XML Schemas 63

6.4 Schema Data Types 64

6.5 Atomic and List Data Types 66

6.6 Aspects of Datatypes in Schema 68

6.7 User Defined Data Types / Data Type Definition in Schema 69

6.8 Constraining Facets / Restrictions on Data Types / Refining

Simple Types Using Facets

71

6.9 Creating XML Schema - Example 77

6.10 Components of XML Schema 78

6.11 Schema VS DTD 101

THE X-FILES, X-PATH, X-POINTER, AND X-LINK

7 7.1 XPATH Introduction 103

7.2 XPATH Terminology 104

7.3 XLINK 115

7.4 XPOINTER 118

XSL

8 8.1 Introduction 126

8.2 Process Of XSLT 127

8.3 The XSLT Processor 129

8.4 Components of XSLT Document 134

8.5 XSL For Business-to-Business (B2B) Communication 141

8.6 XSL Formatting Objects 145

8.7 Generating XSL-FO Tables Using XSLT (or) Dynamically

Create the XSL-FO File Using an XSLT Translation

152

8.8 Web Application Integration: JAVA SERVLETS, XSLT, and

XSL-FO

154

MODELING DATABASES IN XML

9 9.1 Integrating XML with Databases 157

9.2 XML Data Base Mapping 157

9.3 Native XML Support 158

9.4 Modeling Databases in XML 158

9.5 JAXB Solution 160

9.6 Generating the JAXB Classes Based on Schemas 164

9.7 Developing a Data Access Object (DAO) 165

9.8 Developing a SERVLET for HTTP Access 167

 XML PARSER

10 10.1 WHAT ARE XML PARSERS? 169

10.2 PARSING XML USING DOCUMENT OBJECT MODEL 169

10.3 STEPS TO BE FOLLOWED WHEN USING DOM 174

10.4 WALKING THROUGH AN XML DOCUMENT 175

10.5 CREATING AN XML DOCUMENT 179

10.6 DOM TRAVERSAL AND RANGE 180

10.7 OTHER DOM IMPLEMENTATIONS 185

10.8 JAVA ARCHITECTURE FOR XML BINDING (JAXB) 187

Chapter Content Page

10.9 PARSING XMLUSING SAX 188

10.10 SAX VERSIONS 189

10.11 SAX Vs DOM 189

10.12 SAX PACKAGES 190

10.13 WORKING WITH SAX 192

10.14 HANDLING ERRORS 197

IMPORTANT QUESTIONS 201

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

➢ XML stands for Extensible Markup Language and is a text-based markup

language derived from Standard Generalized Markup Language (SGML).

Although XML derived from SGML, XML has simplified the process of

defining and using this metadata

➢ Extensible Markup Language (XML) is fast becoming a standard for data

exchange in the next generation’s Internet applications. XML allows user-

defined tags that make XML document handling more flexible

➢ XML stores data in plain text format. This provides a software and hardware

independent way of storing, transporting, and sharing data.

➢ XML is a syntax for expressing structured data in a text format

➢ XML is not a language on its own. Instead, XML is used to build markup

languages.

➢ XML was designed to store and transport data, but not to display data.

➢ XML was designed to be both human- and machine-readable.

➢ XML is a markup language much like HTML. But it is not a replacement for

HTML

➢ XML was designed to be self-descriptive

➢ XML is platform independent and language independent

➢ XML is a W3C Recommendation

➢ XML was originally called Web SGML, later renamed the

Extensible Markup Language(XML)

1.2 CHARACTERISTICS

There are three important characteristics of XML that make it useful in a variety

of systems and solutions:

➢ XML is extensible: XML allows you to create your own self-descriptive

tags, or language, that suits your application.

➢ XML carries the data, does not present it: XML allows you to store the

data irrespective of how it will be presented.

➢ XML is a public standard: XML was developed by an organization called

the World Wide Web Consortium (W3C) and is available as an open

standard.

2

1.3 XML USAGE

An XML can be:

➢ Used to exchange the information between organizations and systems.

➢ Used for offloading and reloading of databases.

➢ Used to store and arrange the data, which can customize your data handling

needs.

➢ used extensively as Configuration files in J2EE architectures and .Net

architecture (web.config – in Asp.Net, web.xml in Tomcat web server)

➢ Often used to separate data from presentation

➢ Easily merged with style sheets to create almost any desired output.

➢ Virtually, any type of data can be expressed as an XML document.

➢ In Visual Studio.Net, software installation is made easy by using

xml. Software installation is simply done using xcopy. No more use

of Windows registry

➢ XML is complement to HTML

➢ XML is alternate to relational databases

➢ XML is universal standard EDI format(Electronic Data Interchange format)

➢ Used for B2B transactions on the Web:

❖ Electronic business orders (ebXML)

❖ Financial Exchange (IFX)

❖ Messaging exchange (SOAP)

1.4 INDUSTRIES USING XML

For exchanging data between organization in the Internet, there are thousands of

XML formats exist, for many different industries, to describe day-to-day data

transactions:

• Stocks and Shares

• Financial transactions

• Medical data

• Mathematical data

• Scientific measurements

• News information

• Weather services

1.5 ADVANTAGES OF XML OVER SGML

Although SGML provided a solution for exchanging data in a structured, standardized

manner, it was suitable to exchange data between different branches of same organization

that is scattered across different geographical locations, but it was inappropriate for direct

application on the Internet.

The difference between SGML and XML are listed below:

3

SGML XML

Used for exchanging data

between branches within the same

organization, but not suitable for

exchanging information in the Internet

It is universal format for exchanging

data between organization in the

Internet

many SGML implementations require

some DTD for processing

XML permits well-formed documents to

be parsed without the need for a DTD

Syntax of SGML much complex than

XML

Syntax of XML is much simpler

and more permissive in its syntax than

SGML

SGML Stands for Standard Generalized

Markup Language

XML stands for Extensible

Markup Language

XML documents should be readable

with SGML parsers

Whereas, some SGML might produce

errors in XML parsers

Other difference includes:

➢ XML is a subset of SGML

➢ XML is simpler compared to SGML

➢ A list of SGML declarations have been removed in XML

➢ Some constructs that are allowed in SGML are no longer permitted in XML

➢ Some SGML entities are no longer allowed in XML

➢ Some comment practices in SGML have also been disallowed in XML

1.6 ADVANTAGES OF XML OVER HTML

HTML was a pure-Internet approach for displaying and presenting information in a

platform- independent manner, but it was wholly inadequate for representing data

structures.

The difference between HTML and XML are listed below:

HTML XML

HTML stands for Hypertext

Markup Language

XML stands for Extensible

Markup Language

HTML is intended for consumption by

humans

XML is meant for both machine and

human Consumption

It has no capability to represent

metadata, provide validation, or

support even the basic needs of e-

business

It has capability to represent metadata,

provide validation or support even

the basic needs of e-business

Html is a presentation language XML is neither a programming

language nor a presentation language,

but is data definition language

4

HTML XML

HTML was designed to display data –

with focus on how data should looks

XML was designed to carry data - with

focus on what data is

HTML is used for designing a web-

page to be rendered on the client side

browsers, in a platform independent

manner.

XML is used basically to transport data

between the application and the

database. It is universal standard for

data exchange in the next generation’s

Internet applications

HTML tags are predefined, but you

cannot define your own tag

XML tags are not predefined. You must

define your own tags

HTML is case insensitive. XML is case sensitive.

HTML is a markup language itself. XML provides a framework for defining

markup languages

HTML is not strict if the user does not

use the closing tags

XML makes it mandatory for the user

the close each tag that has been used

HTML does not preserve white space XML preserves white space

Empty tag need not ends with / Slash(/)required in empty tags

Attribute value need not enclosed

in quotation

Attribute value must be enclosed

In quotation

HTML is static XML is dynamic

An XML-enabled version of HTML is known as XHTML, in which html tags should

follows all XML syntax rules

1.7 ADVANTAGES OF XML OVER EDI

➢ Although, adaption of EDI is fairly widespread among larger-sized businesses, the

cost of EDI implementation and ongoing maintenance can be measured in the

billions in aggregate. Millions of dollars in transactions occur on a daily basis using

EDI- mediated messages. X12/EDI will be fairly slow to adopt a new standard,

which would necessitate new processing technology, mapping software, and back-

end integration

➢ Compared to EDI and other electronic commerce and data-interchange standards,

XML offers serious cost savings and efficiency enhancements that make

implementation of XML good for the bottom line.

➢ The following components are used in electronic commerce systems for document

exchange: document creation tools, processing components, validity checking, data

mapping, back-end integration, access to a communications backbone, security, etc.

➢ XML greatly simplifies many of these steps. XML’s built-in validity checking, low-

cost parsers(DOM,SAX) and processing tools, Extensible Style sheet Language

(XSLT) based mapping, and use of the Internet bring down much of the e-

commerce chain cost

➢ Another drawback of EDI is that they don’t support easily support the needs for

internationalization and localization. It is difficult to represent information contained

5

in a non-Latin alphabet

➢ whereas, XML syntax allows for international characters that follow the Unicode

standard to be included as content in any XML element

The difference between EDI and XML are listed below:

EDI XML

EDI is a well-established technology

for automating order processing and

document interchange between

computer applications.

XML is an emerging standard designed

to simplify Web-based e-commerce

transactions between computer

applications.

EDI enables highly secure

document exchanges.

XML documents typically need to be

encrypted to maintain security levels.

EDI documents are typically in a

compressed, machine-only readable

form.

XML is an open human-readable,

text format.

EDI documents are typically sent via

private and relatively expensive

value- added networks (VANs).

XML documents are typically sent via

the Internet - i.e. a relatively low-cost

public network.

EDI traditionally requires customized

mapping of each new trading partner’s

document format.

XML is designed to require one

customized mapping per industry

grouping, so most companies will be

able to work to one format and use

XML

EDI typically requires dedicated servers

that cost from US$10,000 and up.

XML requires a reliable PC with an

Internet connection.

EDI can involve high on-going

transaction based costs keeping up the

connection to the EDI network and

keeping the servers up and running.

XML in Internet-based has low

ongoing flat-rate costs using existing

Internet connections and relatively low-

cost Web Servers.

EDI-based transactions account for the

bulk of value of goods and services

exchanged electronically.

XML processes relatively low

transaction values.

EDI is estimated to be limited to

300,000 companies worldwide and

about 20% of their suppliers because of

operational costs and complexity.

XML appears to have no upper limit in

terms of numbers of users.

EDI was traditionally built from the

ground up in semi-isolation without

being able to share resources with

other programs.

XML is being developed in a world of

shared software development populated

by many low-cost tools and open

source projects

6

1.8 ADVANTAGES OF XML OVER DATABASES AND FLAT FILES

XML Flat Files and Database

- XML is a structured document

format that includes not only

the data but also metadata that

describes that data’s content

and context

- Most Flat files (text file) simply cannot offer

this clear advantage. Common file exchange

formats such as comma-delimited and tab-

delimited text files merely contain data in

predefined locations

- Complex file format such as Microsoft Excel

contain more structured information but are

machine-readable, do not contain the level of

structuring present in XML

- XML’s structured

document formats are text

based

- Relational and object-oriented databases and

formats can represent data as well as metadata,

but their formats are not text based.

- Most databases use a proprietary binary format

to represent their information

- XML is universal standard for

data exchange in the next

generation’s Internet

applications

- Although text files can also be transmitted via e-

mail and over the Web, structured formats such

as relational and object-oriented databases are

not easily accessible over the Internet due to

their binary-based formats and proprietary

connection mechanisms

- gateway software and other mechanisms are

 needed to access these formats

- Processing tools for XML have

become relatively widespread

and inexpensive.

- Processing tools for flat file and database are

custom, proprietary, or expensive

- they are usually specific to the particular file

format

1.9 DRAWBACKS TO XML

➢ XML takes up lots of space to represent data that could be similarly modeled

using a binary format or a simpler text file format. The reason for this is simple:

It’s the price we pay for human-readable, platform-neutral, process-separated,

metadata- enhanced, structured, validated code.

➢ XML documents can be 3 to 20 times as large as a comparable binary or

alternate text file representation. It’s possible that 1GB of database information

can result in over 20GB of XML-encoded information

➢ Large XML documents may need to be loaded into memory before processing,

and some XML documents can be gigabytes in size. This can result in sluggish

processing, unnecessary reparsing of documents, and otherwise heavy system

loads

➢ Much of the “stack” of protocols requires fairly heavy processing to make it

work as intended

7

➢ In addition, a problem of many current XML parsers is that they read an entire

XML document into memory before processing. This practice can be disastrous

for XML documents of very large sizes

➢ Despite all the added value in representing data and metadata in a structured

manner, some projects simply don’t require the complexity that XML

introduces. In these cases, simple text files do the job more efficiently

➢ Although XML does offer validation technology, it is not currently as

sophisticated as many of the EDI syntax checkers. XML editors often lack the

detail and helpfulness found in common EDI editors.

1.10 APPLICATION AREAS OF XML

XML is making it easier to conduct e-business and e-commerce, manage online

content, work with distributed applications, communicate, and otherwise

provide value.

➢ E-Business and E-Commerce

❖ e-business practices include delivering information to customers via the

Internet, implementing customer relationship management systems, and

connecting branches together utilizing electronically distributed methods

❖ E-commerce generally refers to the ability to perform a particular

transaction with a customer in an electronic or online format. E-

commerce is usually much smaller in scope and focused than overall e-

business and usually implies a direct transaction between two parties. To

make the distinction with e-business clear, buying a book online is

considered an e-commerce transaction, whereas enabling the fulfillment

and delivery of that book using electronic methods is considered e-

business

❖ One of the main uses of XML in e-business is the representation of the

various business transactions that occur on a daily basis between partners

in a trading process. This includes purchase orders, invoices, shipping,

bills of lading, and warehousing information

❖ One of the major steps in any e-business process is payment for services

rendered or goods sold. Even in this area, XML is making a major impact.

XML has been used to send payment information of all types, including

credit cards, cash, vouchers, barter exchanges, and electronic funds

transfers

❖ XML is making waves in the area of security also. XML has been used for

security specifications of all sorts, ranging from encryption and

authorization to privacy

➢ Content Management

❖ In Internet Era, any application or document can instantly be shared with

others. This has led to the concept that all information or data can be

8

considered “content” that can be accessible and integrated with other

systems. XML is being used to enable all forms of content management

and application integration

❖ Content that formerly was locked into proprietary file formats. XML is

now enabling this content to be searched, located, and integrated with

applications. “Legacy” systems, such as Customer Relationship

Management (CRM), Enterprise Resource Planning (ERP), accounting,

finance, Human Resources (HR), and other systems, are now

communicating with each other using XML

➢ Web Services and Distributed Computing

❖ Distributed computing is the ability to distribute processing

responsibilities and functions among machines on a local or wide area

network

❖ Programming functionality encapsulated within “objects” is exchanged

via Remote Procedure Calls (RPCs)

❖ Distributed computing, has been attempted through

 technologies such as the Component Object Model (COM) and

CORBA

❖ XML aims is to develop platform-neutral data-format through which

applications running in the heterogeneous environment can communicate

with each other

❖ A Web service is not a Web site that a human reads, but for reading from

other process running on different machine

❖ A Web service is an interface that describes a collection of operations that

are network accessible through standardized XML messaging

❖ Web service is built on top of XML, SOAP, WSDL, UDDI In that XML

is base for program to program communication

➢ Peer-to-Peer Networking and Instant Messaging

❖ Individuals can quickly exchange messages, files, and other information with each

other on an on-demand basis. Known as peer-to-peer networks (P2P), this “instant

file sharing” technology

❖ Instant messaging provides the ability to send messages to colleagues, friends, and

business partners.

❖ Instant messaging has spread to many different devices, ranging from desktop

computers to cell phones, and has included such features as desktop application

sharing, video conferencing, and voice communications

❖ XML is quickly making its presence felt in both of these rapidly growing

technology areas. Various XML specifications and protocols are being used to

allow individuals and organizations to send instant messages, locate other users,

and locate, exchange, and store files on peer-to-peer networks in an open and

nonproprietary manner

9

➢ Getting More Meaning out of the Web: The Semantic Web

❖ “The Semantic Web is an extension of the current Web in which information is

given well-defined meaning, better enabling computers and people to work in

cooperation.

❖ The most practical of these implementations will help enable users to make better,

more relevant searches.

❖ The implications of the Semantic Web, made possible only through the use of

XML

1.11 FEATURES AND ADVANTAGES OF XML

XML is widely used in the era of web development. It is also used to simplify data -

storage and data sharing.

The main features or advantages of XML are given below.

XML separates data from HTML

➢ If you need to display dynamic data in your HTML document, it will take a lot of

work to edit the HTML each time the data changes.

➢ With XML, data can be stored in separate XML files. This way you can focus on

using HTML/CSS for display and layout, and be sure that changes in the underlying

data will not require any changes to the HTML.

➢ With a few lines of JavaScript code, you can read an external XML file and update

the data content of your web page.

XML simplifies data sharing

➢ In the real world, computer systems and databases contain data in incompatible

formats.

➢ XML data is stored in plain text format. This provides a software- and hardware-

independent way of storing data.

➢ This makes it much easier to create data that can be shared by different applications

XML simplifies data transport

➢ One of the most time-consuming challenges for developers is to exchange data

between incompatible systems over the Internet.

➢ Exchanging data as XML greatly reduces this complexity, since the data can be

read by different incompatible applications.

XML simplifies Platform change

➢ Upgrading to new systems (hardware or software platforms), is always time

consuming. Large amounts of data must be converted and incompatible data

10

is often lost.

➢ XML data is stored in text format. This makes it easier to expand or upgrade

to new operating systems, new applications, or new browsers, without losing

data.

XML increases data availability

➢ Different applications can access your data, not only in HTML pages, but also

from XML data sources.

➢ With XML, your data can be available to all kinds of "reading machines"

(Handheld computers, voice machines, news feeds, etc.), and make it more

available for blind people, or people with other disabilities.

XML can be used to create new internet languages

➢ A lot of new Internet languages are created with XML. Here are some

examples:

❖ XHTML

❖ WSDL for describing available web services

❖ WAP and WML as markup languages for handheld devices

❖ RSS languages for news feeds

❖ RDF and OWL for describing resources and ontology

❖ SMIL for describing multimedia for the web

1.12 XML RELATED TECHNOLOGIES

Here we have pointed out XML related technologies. There are following XML

related technologies:

No. Technology Meaning Description

1 XHTML Extensible

HTML

It is a clearer and stricter version of

XML. It belongs to the family of XML

markup languages. It was developed to

make html more extensible and increase

inter-operability with other data.

2 XML DOM XML

Document Object

Model

It is a standard document model that is

used to access and manipulate XML. It

defines the XML file in tree structure.

3 XSL

it contain

three parts:

Extensible Style

Sheet Language

i) It transforms XML into other

formats, like HTML.

ii) It is used for formatting XML to

11

No. Technology Meaning Description

i) XSLT

(XSL

Transform)

ii) XSL

iii)XPath

screen, paper etc.

iii) It is a language to navigate XML documents.

4 XQuery XML Query

Language

It is a XML based language which is

used to query XML based data.

5 DTD Document Type

Definition

It is an standard which is used to define

the legal elements in an XML document.

6 XSD XML Schema

Definition

It is an XML based alternative to DTD.

It is used to describe the structure of an

XML document.

7 XLink XML Linking

Language

xlink stands for XML linking language.

This is a language for creating

hyperlinks (external and internal links)

in XML documents.

8 XPointer XML Pointer

Language

It is a system for addressing components

of XML based internet media. It allows

the xlink hyperlinks to point to more

specific parts in the

XML document.

9 SOAP Simple Object

Access Protocol

It is an acronym stands simple object

access protocol. It is XML based

protocol to let applications exchange

information over http. in simple words

you can say that it is protocol used for

accessing web services.

10 WSDL Web Services

Description

Languages

It is an XML based language to describe

web services. It also describes the

functionality offered by a web service.

11 RDF Resource

Description

Framework

RDF is an XML based language to

describe web resources. It is a standard

model for data interchange on the web.

It is used to describe the title, author,

content and copyright information of a

web page.

12

No. Technology Meaning Description

12 SVG Scalable Vector

Graphics

It is an XML based vector image format

for two-dimensional images. It defines

graphics in XML format. It also supports

animation.

13 RSS Really Simple

Syndication

RSS is a XML-based format to handle

web content syndication. It is used for

fast browsing for news and updates. It is

generally used for

news like sites.

13

CHAPTER 2

COMPONENTS OF XML

2.1 XML DOCUMENT STRUCTURE

➢ An XML document consists of a number of discrete components or sections.

Although not all the sections of an XML document may be necessary, their

use and inclusion helps to make for a well-structured XML document that can

easily be transported between systems and devices.

➢ The major portions of an XML document include the following:

o The XML declaration

o The Document Type Declaration(DOCTYPE)

 Used to define Schema / DTD definition / user-defined entity

reference

o Entity reference

o The element data

o The attribute data

o The character data or XML content

 PCDATA

 CDATA

o Comments

➢ The following diagram depicts the syntax rules to write different types of

markup and text in an XML document.

Fig. 2.1 XML Syntax Rules

14

➢ The following example describes the parts of XML document:

2.2 XML DECLARATION / PROLOG

➢ The first part of an XML document is the declaration. The XML declaration

is a processing instruction that identifies the document as being XML

➢ Although it is not required, All XML documents should begin with an XML

declaration.

➢ The syntax is given below:

<?xml version="version number" encoding="encoding declaration"

standalone="standalone status" ?>

➢ Example:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

➢ The following table shows a list of the possible attributes that may be used in

the XML declaration.

Attribute

Name

Possible Attribute Value Attribute Description

version 1.0 , 1.1 • Specifies the version of the XML

standard that the XML document

conforms to.

• The version attribute must be included

if the XML declaration is declared.

• In future it could be “2,0”, etc

encoding UTF-8, UTF-16, ISO-10646-

UCS-2, ISO-10646-UCS-4,

ISO-8859-1 to ISO-8859-9,

ISO-2022-JP, Shift_JIS,

EUC-JP

• Indicates the character encoding that

the document uses.

• The default is “US-ASCII”. The most

common alternate setting is “UTF-8”

15

Attribute

Name

Possible Attribute Value Attribute Description

standalone yes, no • Use 'yes' if the XML document has

an internal DTD.

• Use 'no' if the XML document is

linked to an external DTD, or any

external entity references

Rule:

➢ If the XML declaration is included, it must be situated at the first

position of the first line in the XML document well-formedness

constraint.

➢ If the XML declaration is included, it must contain the version number

attribute

2.3 COMMENT

➢ XML comments are just like HTML comments. Comments are used to make

codes more understandable other developers

➢ An XML comment should be written as:

<!-- Write your comment -->

Rules for adding XML comments:

➢ Comments may be placed anywhere, but after the XML declaration

➢ You can use a comment anywhere in XML document except within attribute

value.

➢ Nested comments are not allowed.

Example:

<?xml version="1.0" encoding="UTF-8" ?>

<!--Students marks are uploaded by months-->

<students>

<student>

<name>John</name>

<marks>70</marks>

</student>

16

<students>

2.4 DOCUMENT TYPE DECLARATION (DOCTYPE)

➢ This optional declaration may appear only once in an XML document

➢ A Document Type Declaration(DOCTYPE) gives a name to the XML content

and identifies the internal content by specifying the root element

➢ A DOCTYPE can identify the constraints on the validity of the document by

making a reference to an external DTD or include the DTD internally within

the document (internal DTD)

➢ Although SGML requires a Document Type Declaration, XML has no

restrictions of the sort

➢ The General Forms of the Document Type Declarations is listed below:

<!DOCTYPE ROOT SYSTEM “file”>

<!DOCTYPE ROOT []>

<!DOCTYPE ROOT SYSTEM “file” []>

o The first form only allows use of an externally defined DTD subset

o The second declaration only allows an internally defined DTD subset

within the document

o The third declaration provides a place for inclusion of an internally

defined DTD subset between the square brackets while also making use of

an external subset.

In the syntax:

➢ The keyword ROOT should be replaced with the actual root element

contained in the document

➢ The keyword “file” should be replaced with a path to a valid DTD

➢ example:

(i) <!DOCTYPE shirt SYSTEM “shirt.dtd”>

(ii) <!DOCTYPE book SYSTEM "DTDs/CWP.dtd">

- Here the DTD file is located in subdirectory “DTDs”, under the directory

where XML document is stored

The other forms of the Document Type Declarations is listed below:

<!DOCTYPE root PUBLIC FPI-identifier URL>

<!DOCTYPE root SYSTEM URL>

17

➢ SYSTEM URL

o refers to a private DTD

o Located on the local file system or HTTP server

➢ PUBLIC URL

o refers to a DTD intended for public use

➢ example:

<!DOCTYPE book SYSTEM

"http://www.coreweb.com/DTDs/CWP.dtd">

- Here the DTD file is located at HTTP server: http://www.coreweb.com

2.5 XML ELEMENTS

➢ It is the Basic Unit of an XML. It is used to define content of the Xml

document

➢ XML elements are either a matched pair of XML tags(container Element)

or

➢ single XML tags(Empty Element) that are “self-closing”

(i) Container element

➢ Container elements are closed using following syntax:

<element-name [attribute1=”value1” attribute2=”value2” …] >

...

</element>

➢ A container Element can contain:

• text

o <custName>Dr. John</custName>

• attributes

o <book publisher="The Palm"></book>

• other elements

o <book>< publisher>The Palm</publisher></book>

• or a mix of the above

<book publisher="The Palm">

<title> Mobile Application Development</title>

</book>

18

(ii) Empty element

➢ Empty element must be closed as shown in the following syntax:

<element [attribute1=”value1” attribute2=”value2” …] />

➢ it may contain attribute, but may not contain child element. an example is

given below:

<book publisher=" The Palm " />

➢ Nesting of elements: An XML-element can contain multiple XML-elements

as its children, but the children elements must not overlap. i.e., an end tag of

an element must have the same name as that of the most recent unmatched

start tag.

➢ Following example shows correct nested tags:

<?xml version="1.0"?>

<contact-info>

<company>The Palm</company>

<contact-info>

Following example shows incorrect nested tags:

<?xml version="1.0"?>

<contact-info>

<company>The Palm

<contact-info>

</company>

(iii) Root Element

➢ An XML document can have only one root element. The following example

shows a correctly formed XML document:

<root>

<x>...</x>

<y>...</y>

</root>

➢ For example, following is not a correct XML document, because both the x

and y elements occur at the top level without a root element:

<x>...</x>

<y>...</y>

Rules for defining XML Elements

➢ Element names must start with a letter or underscore

➢ The rest of the characters in the element-name can contain the following:

19

letters, digits, hyphens(-), underscores(_), and periods(.)

➢ Names of XML-elements are case sensitive. For example <contact-info> is

different from <Contact-Info>.

➢ Start and end tags of an element must be identical

➢ A container element can contain text or other child-elements

➢ Element names cannot contain spaces

➢ Element names can be anything other than XML

2.6 ATTRIBUTES

➢ XML elements can have attributes. Attributes are used to add the information

about the element. Attributes provide metadata for the element

➢ XML attributes enhance the properties of the elements.

➢ An attribute can be defined using name/value pair within an XML Element.

An XML-element can have one or more attributes. For example:

<book category="Computer">

<author> Dr. Shiny </author>

<publication> The Palm </publication>

</book>

Note: In the above example, Metadata should be stored as attribute and data

should be stored as element.

➢ Rules for XML Attributes

o Attribute names in XML are case sensitive. That is, HREF and href are

considered two different XML attributes

o Same attribute cannot be declared more than once with in single element.

The following example shows incorrect xml syntax because the attribute b

is specified twice:

.

o An attribute value must always be quoted. We can use single or double

quote. Following example demonstrates incorrect xml syntax, because

attribute value is not enclosed in quotation:

.

20

2.7 ENTITY REFERENCES

➢ An entity reference is a group of characters used in text as a substitute for a

single specific character that is also a markup delimiter in XML. Using the

entity reference prevents a literal character from being mistaken for a markup

delimiter

➢ An Entity can be of two types: pre-defined, user-defined

➢ Entity references always begin with an ampersand (&) and end with a

semicolon (;)

Pre-defined entity

➢ For example, if an attribute must contain a < symbol then you can substitute it

with the entity reference "<" as shown in the following example:

<shirt price-range="< Rs.500 and >Rs.250 "

color="Yellow” /> (or)

<shirt>

<price-range>< Rs.500 and >Rs.250</price-range>

< color>Yellow</color>

<shirt>

➢ It is typically used to represent special characters within the textual content of

XML Element or Attributes, which may be:

o markup delimiters such as <. >,",' (or)

o Special symbols that is not present in the keyboard such as

©,®,¥,β,µ etc.

➢ The pre-defined entities in XML are listed in the following table.

Character Entity reference Numeric reference Hexadecimal reference

& & & &

< < < <

> > > >

" " " "

' ' ' '

➢ Alternatively, you can also substitute a predefined entity reference with either

numeric reference(decimal character reference) or hexadecimal character

reference as shown in the table, both together is simply referred to as

character reference

Character References

➢ Another special form of entity reference is the character reference, which is

21

used to insert arbitrary Unicode characters into an XML document

➢ This allows international characters to be entered even if they can’t be typed

directly on a keyboard. Character entities use either decimal or hexadecimal

references to describe their Unicode data values

(i) Decimal character reference (numeric reference)

➢ These contain references contains a hash mark (“#”) followed by a number.

The number always refers to the Unicode code of a character.

➢ for example Decimal character reference A refers to alphabet "A".

(ii) Hexadecimal character reference

➢ These contain references contains a hash mark (“#”) followed character ‘x’

followed by a hexa-decimal number. The number always refers to the

Unicode code of a character.

➢ For example Hexadecimal character reference A refers to alphabet "A".

User-defined entity

➢ The above table shows some predefined entities in XML. But you can also

declare your own user-defined entities with in a DTD or XML Scheme. There

are internal and external entities

➢ Each user-defined entity must have a unique name that is defined as part of an

entity declaration in a DTD or XML Schema.

➢ User-defined entities are used to refer often repeated or varying text or to

include the content of external files.

➢ For example, an entity &legal; can be replaced with an organization’s legal

disclaimer, consisting of any XML text that is included in the DTD or read

from a file

Declaring entities

➢ You can declare entities in a DTD in the following format:

<!ENTITY name "text">

➢ Where name is the name of the entity and text is the referenced text that

appears where the entity is used.

➢ This example declares an user-defined entity named 'COPYRIGHT' and uses

it in the XML document:

<?xml version="1.0" standalone="yes" ?>

<!DOCTYPE book [<!ELEMENT book (title)>

<!ELEMENT title (#PCDATA)>

<!ENTITY COPYRIGHT "2001, Prentice Hall">]>

22

<book>

<title>Core Web Programming, ©RIGHT;</title>

</book>

2.8 XML TEXT

➢ The names of XML-elements and XML-attributes are case-sensitive, which

means the name of start and end elements need to be written in the same case.

➢ To avoid character encoding problems, all XML files should be saved as

Unicode UTF-8 or UTF-16 files.

➢ Whitespace characters like blanks, tabs and line-breaks between XML-

elements and between the XML-attributes will be ignored.

➢ Some characters are reserved by the XML syntax itself. Hence, they cannot

be used directly. To use them, some replacement-entities are used, which are

listed below:

Not allowed

character

Replacement

- entity

Character

description

< < less than

> > greater than

& & Ampersand

' ' Apostrophe

" " quotation mark

➢ The Text value with in a container element, could be of two types:

o PCDATA – data can contain any characters, except xml delimiters

o CDATA - data can contain any characters, including xml delimiters

o

PCDATA(Parsed Character Data) section

➢ PCDATA is text found between the start- tag and the end- tag of an XML

element

➢ parsed character data should not contain any &, <, or > characters; these need

to be represented by the & < and > entities, respectively.

➢ PCDATA is text that WILL be parsed by a parser. Tags inside the text will be

treated as markup and entities will be expanded.

23

CDATA(Character Data) section or Marked CDATA section

➢ CDATA is text that will NOT be parsed by a parser. Tags inside the text will

NOT be treated as markup and entities will not be expanded

➢ character data can contain any &, <, or > characters, or any special character

➢ CDATA sections are commonly used for storing scripting language

content and sample XML and HTML content within the XML file

➢ The general syntax to include CDATA is:

▪ <![CDATA[any characters (including markup) …]]>

➢ An example given below:

<?xml version="1.0"?>

<!DOCTYPE for-loop [<!ELEMENT for-loop(syntax,example)>

<!ELEMENT syntax(#PCDATA)>

<!ELEMENT example(#PCDATA)>]>

<for-loop>

<syntax>

for(initialization;condition;increment){ Statement[s]; }

</syntax>

<example>

<![CDATA[while(i=0;i<10;i++) { printf(“\n%d”,i); }]]>

</example>

</for-loop>

CDATA Rules:

➢ CDATA cannot contain the string "]]>" anywhere in the XML document.

➢ Nesting of CDATA section is not allowed.

2.9 PROCESSING INSTRUCTIONS

➢ Processing instructions (PIs) are used to embed application specific

instructions into your xml documents

➢ It is commonly referred as PIs. PIs are not part of actual documents, which

are passed up to the application

➢ Processing instructions have the following form:

<? PI-Target processing-instructions ?>

➢ Where PI-Target – is the name of the application that is supposed to receive

processing instructions

➢ A sample processing instruction is given below:

24

<?messageprocessor “process complete”?>

Example 2:

<Name nickname=”kaja”>
<FirstName>kajendran</FirstName>
<MiddleName /><!—kajendran missed his middle name in the fire -->

<? Nameprocessor “select * from blob” ?>
<LastName>krishnan</LastName>

</Name>

2.10 WELL FORMED XML DOCUMENTS

➢ A document is said to be well formed, only if it obeys the syntax of XML

➢ Any XML document said to be "Well Formed" XML document, if it

satisfies the following syntax rules:

1. An XML document must contain only one root element and that must

be the parent of all other elements

Correct Incorrect

<?xml version="1.0"?> <?xml version="1.0"?>

<catalog> <book>

<book> <title>C# complete reference</title>

<title>C# complete reference</title> <price>$20</price>

<price>$20</price> </book>

</book> <book>

<book> <title>XML step by step</title>

<title>XML step by step</title> <price>$30</price>

<price>$30</price> </book>

</book> Reason: contain more than one root

</catalog> element <book>

Reason: contain only one root element

2. All XML Container Elements Must Have a Closing Tag

25

Correct Incorrect

<?xml version="1.0"?>

<name>

<first-name>John</first-name>

<last-name>Mesia Dhas</last-name>

</name>

<?xml version="1.0"?>

<name>

<first-name>John

<last-name>Mesia Dhas</last-name>

</name>

Reason: element <first-name> does not

have closing tags

3. All XML Container Elements Must Have Proper Nesting

Correct Incorrect

<?xml version="1.0"?>

<address>

<NAME>

<first-name>John</first-name>

<last-name>Mesia Dhas</last-name>

</NAME>

<steet>#1, MGR Street</street>

<area>Charles Nagar</area>

<city>Chennai-72</city>

</address>

<?xml version="1.0"?>

<address>

<NAME>

<first-name>John</NAME>

<last-name>Mesia Dhas</last-name>

</first-name>

</address>

Reason: Tags <name>& <first-name> are

not properly nested

4. XML tags are case sensitive. In XML, the elements <shirt> and <Shirt> are

different

Correct Incorrect

<?xml version="1.0"?> <?xml version="1.0"?>

<name> <name>

<first-name>John</first-name> <First-Name>John</first-name>

<last-name>Mesia Dhas</last-name> <last-name>Mesia Dhas</last-name>

</name> </name>

5. All XML Empty element must ends with /> (forward slash followed by

greater than symbol)

26

Correct Incorrect

<Name>

<FirstName>John</FirstName>

<MiddleName />

<LastName> Mesia Dhas</LastName>

</Name>

(i) <MiddleName/ >

(ii) <MiddleName / >

Reason: An empty element must ends

with />. But both (i) and (ii) contain

space in between / and > symbol

6. XML attribute values must be quoted. Use either single quotes or double

quotes

Correct Incorrect

<book publisher="The Palm"> <book publisher= The Palm >

<title> Python 3.7.1</title> <title> Python 3.7.1</title>

</book> </book>

Reason: Attribute publisher’s value is

 not quoted

7. No attribute may appear more than once on the same start-tag

Correct Incorrect

<book category="computers”>
<title> Python 3.7.1</title>

</book>

<book category="computers”

category="internet” >

<title> Python 3.7.1</title>

</book>

Reason: Attribute category appears twice

within same tag

8. Attribute Values Cannot Contain References to External Entities

9. All Entities Except amp, lt, gt, apos, and quot must be declared before they

are used

10. A binary entity cannot be referenced in the flow of content, it can only be

used in an attribute declared as ENTITY or ENTITIES

11. Neither text nor parameter entities are allowed to be recursive, directly or

indirectly

27

CHAPTER 3

XML NAMESPACES

➢ XML Namespaces provide a mechanism to avoid element name conflicts and

attribute name conflict

➢ The main purpose of namespace is to group elements and to differentiate an

element from others with a similar name

➢ XML namespaces provide a simple method for qualifying element and

attribute names used in XML documents by associating them with

namespaces identified by URI references

➢ Namespaces are a simple and straightforward way to distinguish names used

in XML documents, no matter where they come from

➢ Namespace is a mechanism by which element and attribute name can be

assigned to group. The Namespace is identified by URI (Uniform Resource

Identifiers).

➢ In an XML document, the URI is associated with a prefix, and this prefix is

used with each element to indicate to which namespace the element belongs.

For example: rdf:description xsl:template

In these examples,

o the part before the colon is the prefix

o the part after the colon is the local part

o any prefixed element is a qualified name

o any un-prefixed element is an unqualified name

3.1 NAME CONFLICTS

➢ In XML, element names are defined by the developer. This often results in a

conflict when trying to mix XML documents from different XML

applications in large XML- based distributed systems.

➢ For example, consider the following XML document that carries information

about HTML table example:

<table>

<tr>

<td>Apples</td>

<td>Bananas</td>

</tr>

28

</table>

➢ The following is an XML document that carries information about a table (a

piece of furniture):

<table>

<name>Indian Teak Table</name>

<width>80</width>

<length>120</length>

</table>

➢ If these XML fragments were added together, there would be a name conflict.

Both contain a <table> element, but the elements have different content and

meaning.

3.2 SOLVING THE NAME CONFLICT USING A PREFIX

➢ Name conflicts in XML can easily be avoided using a name prefix. The

following XML carries information about an HTML table, and a piece of

furniture:

<h:table>

<h:tr>

<h:td>Apples</h:td>

<h:td>Bananas</h:td>

</h:tr>

</h:table>

<f:table>

<f:name>Indian Teak Table</f:name>

<f:width>80</f:width>

<f:length>120</f:length>

</f:table>

➢ In the example above, there will be no conflict because the two <table>

elements have different names.

Drawback

➢ If prefix itself same for more than one xml document, then again name

conflict occurs. To avoid this we can use xml namespace along with prefix

3.3 SOLVING NAME CONFLICT USING NAMESPACE DECLARATION

➢ The namespace can be defined by an xmlns attribute in the start tag of an

element. The namespace declaration has the following syntax:

29

<element-name xmlns:prefix="URI">

Where

• The Namespace starts with the keyword xmlns.

• The word prefix is the Namespace prefix.

• The URI is the Namespace identifier.

➢ Consider the following example:

<root>

<h:table xmlns:h="http://www.w3.org/TR/html4/">

<h:tr>

<h:td>Apples</h:td>

<h:td>Bananas</h:td>

</h:tr>

</h:table>

<f:table xmlns:f="http:/ www.pepperfry.com /furniture">

<f:name>African Coffee Table</f:name>

<f:width>80</f:width>

<f:length>120</f:length>

</f:table>

</root>

➢ In the example above:

• The xmlns attribute in the first <table> element gives the h: prefix a

qualified namespace.

• The xmlns attribute in the second <table> element gives the f: prefix a

qualified namespace.

• When a namespace is defined for an element, all child elements with the

same prefix are associated with the same namespace.

➢ Namespaces can also be declared in the XML root element:

<root xmlns:h="http://www.w3.org/TR/html4/" xmlns:f="http://

www.pepperfry.com /furniture">

<h:table>

<h:tr>

<h:td>Apples</h:td>

<h:td>Bananas</h:td>

</h:tr>

</h:table>

<f:table>

<f:name>African Coffee Table</f:name>

<f:width>80</f:width>

<f:length>120</f:length>

30

</f:table>

</root>

➢ Note: The namespace URI is not used by the parser to look up information.

The purpose of using an URI is to give the namespace a unique name.

➢ Notice that the prefix f, h, has been added to both the start and the end tags

and is followed by a colon and then the element’s local name

➢ If you want the attributes in the document to be also in the namespace then

you follow a similar procedure as shown in Listing:

<hr:ApplicationUsers

xlns:hr=”http://wrox.com/namespaces/applications/hr/config”>

<user hr:firstName=”Joe” hr:lastName=”Fawcett” />

<user hr:firstName=”Danny” hr:lastName=”Ayers” />

<user hr:firstName=”Catherine” hr:lastName=”Middleton” />

</hr:applicationUsers>

➢ The namespace prefix is prepended to the attribute’s name and followed by a

colon

3.4 SCOPE OF NAMESPACE

➢ The namespace declaration must come either on the element that uses it or on

one higher in the tree, an ancestor as it’s often called

➢ The file content shown below is not well formed because the declaration is

too far down the tree and therefore not in scope:

<hr:applicationUsers>

<user

 xmlns:hr=”http://wrox.com/namespaces/applications/hr/c

onfig” firstName=”Joe” lastName=”Fawcett” />

<user firstName=”Danny” lastName=”Ayers” />

<user firstName=”Catherine” lastName=”Middleton” />

</hr:applicationUsers>

3.5 NAMING NAMESPACES

➢ XML namespace identifiers must conform to a specific syntax—the syntax

for Uniform Resource Identifier (URI) references. This means that XML

namespace identifiers must follow the generic syntax for URIs defined by

RFC 2396.

➢ URI references are used to identify physical resources (Web pages, files to

download, and so on), but in the case of XML namespaces, URI references

31

identify abstract resources, specifically, namespaces.

3.6 DEFAULT NAMESPACES

➢ Defining a default namespace for an element saves us from using prefixes in

all the child elements. It has the following syntax:

<element-name xmlns="URI">

➢ This XML carries information about a piece of furniture:

<table xmlns="http://www.pepperfry.com/furniture ">
<name>African Coffee Table</name>
<width>80</width>
<length>120</length>

</table>

3.7 DECLARING MORE THAN ONE NAMESPACE

Many XML documents use more than one namespace to group their elements.

You have a number of choices when you need to design XML in this fashion

Option 1: Choose a default namespace for some elements and an explicit one

for others.

➢ In the following example, we place the <applicationUsers> element in the hr

namespace and the <user> elements themselves in a different one, which is

used by

<user> elements across all company documents

➢ hr namespace is created as the default and the entities namespace created

as explicit. You need a prefix for the newer one so choose ent

<applicationUsers xmlns=”http://wrox.com/namespaces/hr”

xmlns:ent=”http://wrox.com/namespaces/entitie

s”>

<ent:user firstName=”John” lastName=” Mesia Dhas” />

<ent:user firstName=”Sam” lastName=”Dhas” />

<ent:user firstName=”Shiny” lastName=”Angel” />

<user name=”Sheeba” />

</applicationUsers>

➢ Because both declarations are on the root element they are in scope for the

whole of the document. Therefore any elements without a prefix fall into the

hr namespace and any with an ent prefix fall into the entities namespace

32

Option 2: Make both namespace declarations explicit, to avoid a default

namespace, because it makes which element is grouped under which namespace

not clear. An example is given below:

<hr:applicationUsers xmlns:hr=”http://wrox.com/namespaces/hr”

xmlns:ent=”http://wrox.com/namespaces/entities”>

<ent:user firstName=”John” lastName=” Mesia Dhas” />

<ent:user firstName=”Sam” lastName=”Dhas” />

<ent:user firstName=”Shiny” lastName=”Angel” />

<hr:user name=”Sheeba” />

</hr:applicationUsers>

Option 3: Declaring a namespace twice with different prefixes. An example is

given below:

<hr1:applicationUsers xmlns:hr1=”http://wrox.com/namespaces/hr”

xmlns:hr2=”http://wrox.com/namespaces/hr”>

<hr2:user firstName=”John” lastName=” Mesia Dhas” />

<hr2:user firstName=”Sam” lastName=”Dhas” />

<hr2:user firstName=”Shiny” lastName=”Angel” />

</hr1:applicationUsers>

3.8 INVALID NAMESPACE

➢ Note: As shown in the above example, there are more than one prefix can

point to the same namespace, it is well formed(or namespace-well-formed)

➢ But you cannot have the same prefix pointing to different namespace URIs,

as shown below:

<hr:applicationUsers xmlns:hr=”http://wrox.com/namespaces/hr”

xmlns:hr=”http://wrox.com/namespaces/entities”>

<hr:user firstName=”John” lastName=” Mesia Dhas” />

<hr:user firstName=”Sam” lastName=”Dhas” />

<hr:user firstName=”Shiny” lastName=”Angel” />

</hr:applicationUsers>

➢ The above example is not namespace–well-formed.

3.9. UNDECLARING NAMESPACE MAPPING

➢ Sometime, you want to undeclare a namespace mapping completely.

33

➢ You can do this depends on if it’s a default mapping and which version of the

XML Namespaces recommendation you are using. Currently there are

versions 1.0 and 1.1

Undeclaring default namespace

➢ The default mapping can be undeclared in all xml versions. To do this you

just need to use an empty namespace URI in the child elements as shown in

the following example:

<config xmlns=”http://wrox.com/namespaces/hr/config”>
<applicationUsers xmlns=””>

<user firstName=”John” lastName=” Mesia Dhas” />
<user firstName=”Sam” lastName=”Dhas” />
<user firstName=”Shiny” lastName=”Angel” />

</applicationUsers>
</config>

➢ In this variation the<config> element is in the

http://wrox.com/namespaces/hr/config namespace, but the other elements

are not in any namespace (otherwise known as being in the empty or null

namespace). This is because the xmlns=”” on the <applicationUsers>

element

Undeclaring explicit namespace or undeclaring namespace with prefix

➢ Undeclaring the namespace with prefix can be done only in version 1.1

xml documents

➢ The following example shows an XML document that declares the correct

version and then maps and unmaps a namespace to a prefix:

<?xml version=”1.1” ?>

<hr:config

xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”>

<applicationUsers xmlns:hr=»»>

<user firstName=”John” lastName=” Mesia Dhas” />
<user firstName=”Sam” lastName=”Dhas” />
<user firstName=”Shiny” lastName=”Angel” />

</applicationUsers>

</hr:config>

➢ Here the hr prefix is mapped to a namespace URI on the <config> element

and then unmapped on the <applicationUsers> element. This means that it

would be illegal to try to use the prefix from this point.

34

CHAPTER 4

URL, URI, AND URN

4.1 UNIFORM RESOURCE LOCATOR (URL)

➢ URL specifies the location of a resource, for example a web page, and how

it can be retrieved. It has the following format:

o [Scheme]://[Domain]:[Port]/[Path]?[QueryString]#[FragmentId]

➢ The terms in square brackets are replaced by their actual values and the rest

of the items other than Scheme and Domain are optional. So, a typical web

URL would be

o http://www.wrox.com/remtitle.cgi?isbn=0470114878

➢ The scheme is HTTP, the domain is www.wrox.com, followed by the path

and a querystring. You can use many other schemes, such as FTP and

HTTPS, but the main point about URLs is that they enable you to locate a

resource, whether that is a web page, a file, or something else.

4.2 UNIFORM RESOURCE IDENTIFIER (URI)

➢ URI is just a unique string that identifies an Internet Resource or something

else.

➢ According to the URI specification, there are two general forms of URI:

o Uniform Resource Locators (URL) and

o Uniform Resource Names (URN)

➢ Either type of URI may be used as a namespace identifier.

4.3 UNIVERSAL RESOURCE NAME (URN)

➢ Another, not so common type of URI is the Universal Resource Name

(URN).

➢ A URN is a name that uniquely defines something. URNs take the following

format:

o urn:[namespace identifier]:[namespace specific string]

➢ The items in square brackets need to be replaced by actual values and the

three- character prefix, urn, is not case-sensitive

➢ An example of a URN would be:

urn:isbn:9780470114872

35

➢ This URN uniquely identifi es the fourth edition of this book, but because

it’s a URN, not a URL, it doesn’t tell you anything about how to retrieve

either the book itself or any information about it

➢ Here are a few examples of URNs that could also be used as namespace

identifiers:

urn:www-develop-com:student

urn:www.ed.gov:elementary.students

urn:uuid:E7F73B13-05FE-44ec-81CE-F898C4A6CDB4

4.4 XML 1.1 NEW FEATURES

(i) Unicode character set support

➢ XML1.0 documents will be limited to the character set defined in Unicode

2.0, but XML1.1 document theoretically should handle any Unicode from

2.0 to the current 3.2 and beyond

(ii) Character Data formats

➢ In XML1.1, the Character Data should be resolved into one of five formats:

o CData

o CharData

o Content

o name

o nmtoken

(iii) XML 1.1 Line-end characters

➢ XML 1.1 has the capability to handle line-end characters generated in IBM

mainframe file format. This is very useful feature for sharing XML

document across ASCII and EBCDIC –based platform

➢ XML 1.1 parsers are required to recognize and accept EBCDIC line-end

characters(#x85) and Unicode line separator (#x2028). These values should

be converted to one of XML 1.0 line-end characters:linefeed(declimal

10,#xA), or carriage return (declimal 13,#xD)

Example

➢ If you want to hard-code a carriage return in an XML1.0

documents, the following hex character reference can be used:

<?xml version=”1.0” encoding=”UTF-8” ?>

36

<LineEndExample>first line second line</LineEndExample>

➢ When parsed, the result will look like the following:

<?xml version=”1.0” encoding=”UTF-8” ?>

<LineEndExample>first line

second line</LineEndExample>

➢ In an XML1.1 documents, you could also hard-code an EBCDIC

value to be used on IBM mainframe system as shown in the

following example

<?xml version=”1.0” encoding=”UTF-8” ?>

<LineEndExample>first line &x85; IBM</LineEndExample>

➢ When parsed, the result will look like the following:

<?xml version=”1.0” encoding=”UTF-8” ?>

<LineEndExample>first line IBM </LineEndExample>

➢ When this code is parsed on non-IBM mainframe systemsm, the

line-end should be replaced with an XML1.0 ASCII value

(iv) Undeclaring previously declared namespace with prefix

➢ Undeclaring the namespace with prefix can be done only in version 1.1

XML documents, but not in version 1.0 XML documents

➢ Default namespace can be undeclared in both version 1.0 and 1.1

(v) IRIs (Internationalized Resource Identifiers)

➢ Another change made in version 1.1 is that namespace URIs (Uniform

Resource Identifiers) are now officially referred as IRIs (Internationalized

Resource Identifiers)

➢ IRIs can contain characters from sets other than the basic ASCII ones. You

may have noticed that web addresses sometimes have characters that need

to be escaped using the %xx format, where xx represents the Unicode code

point for the character

➢ With IRIs these characters can be used directly so, for example, a Russian

website can use characters from the Cyrillic alphabet in its page names

37

CHAPTER 5

DOCUMENT TYPE DEFINITION

5.1 VALIDATING XML DOCUMENTS

➢ XML documents are mainly used to exchange information between program

to program over the network. So that before transmitting XML documents

from one program to another in the network, we want to make ensure it is

suitable for processing in the remote machine, which reduce network traffic

by avoiding repeated transmission of same xml documents due to invalid

data.

➢ Validating xml documents means that the elements of the xml documents

are in proper order, values of the elements and attributes are valid

➢ Validation of xml document can be done using:

o DTD (Document Type Definition)

o XML Schema

➢ DTD and schema are actually two different ways to specify the rules about

the contents of an XML document.

5.2 WELL FORMED VS VALID XML DOCUMENTS

➢ By definition, if a xml document is not well-formed, it is not XML

documents.

Well Formed XML document Valid XML Document

An XML d o c u m e n t i s said t o

be well formed, only if it obeys the

syntax of XML

A well-formed XML document is said to

be valid, if it conforms to the constraints

defined in a DTD or Schema

A “well-formed” XML document

need not required to be “valid”

But a “valid” document is always

“well- formed”

5.3 DTD (DOCUMENT TYPE DEFINITION)

➢ A DTD defines the structure and the legal elements and attributes of an XML

document.

➢ The purpose of a DTD is to define the legal building blocks of an XML

document. It defines the document structure with a list of legal elements

➢ DTD is used to validate the following in the XML document:

o What are the elements allowed in the XML document?

o In what order/sequence the elements should appear in the XML

38

document

o What are attributes of every element, and whether it is optional or

required

o What is the relation between elements?

Why Use a DTD?

➢ With a DTD, independent groups of people can agree on a standard DTD for

interchanging data.

➢ Your application can use a standard DTD to verify that data that you receive

from the outside world is valid.

➢ You can also use a DTD to verify your own data.

5.4 DOCTYPE (DOCUMENT TYPE DECLARATION)

➢ The Document Type Declaration, or DOCTYPE, informs the parser that

your document should conform to a DTD

➢ It also indicates where the parser can find the rest of the definition

➢ Internal DTD is embedded within the xml document through <!DOCTYPE>

➢ External DTD is linked with XML document through <!DOTTYPE>

➢ The generic structure of DOCTYPE declaration is shown below:

<!DOCTYPE ROOT-ELEMENT-NAME SYSTEM|PUBLIC “location1”

“location2” […]>

5.5 TYPES OF DTD

➢ There are two ways of associating a DTD with an XML document. They are:

o Internal DTD - A DTD can be declared inline in your XML

document

o External DTD- An XML document refers to external DTD

DOCTYPE with an Internal DTD Definition

➢ The simplest form of DOCTYPE declaration is given below, which is used

to define internal DTD:

<!DOCTYPE ROOT-ELEMENT-NAME []>

An example of internal DTD is given below

<?xml version=”1.0”?>

<!DOCTYPE name [<!ELEMENT name (first, middle, last)>

<!ELEMENT first (#PCDATA)>

39

<!ELEMENT middle (#PCDATA)>

<!ELEMENT last (#PCDATA)>

]>

<name>

<first>John</first>

<middle>Fitzgerald Johansen</middle>

<last>Doe</last>

</name>

DOCTYPE with an External DTD Definition

➢ For linking external DTD with XML Document, you must use either

SYSTEM or PUBLIC in the DOCTYPE declaration

➢ SYSTEM identifier

o refers to a private DTD used by single organization

o Located on the local file system or HTTP server

➢ PUBLIC identifier

o refers to a DTD intended for public use, and shared by multiple

organization

System Identifiers

➢ A system identifier allows you to specify the location of an external file

containing DTD declarations. It is comprised of two parts:

o the keyword SYSTEM and

o a URI reference pointing to the document’s location.

➢ A URI can be a file on your local hard drive, a file on your intranet or

network, or even a file available on the Internet

➢ Syntax:

<!DOCTYPE ROOT-ELEMENT-NAME “DTD-file-name”>

➢ where DTD-file-name is the file with .dtd extension

➢ The following example uses system identifiers:

<!DOCTYPE name SYSTEM “file:///c:/name.dtd” []>

<!DOCTYPE name SYSTEM “http://wiley.com/hr/name.dtd” []>

<!DOCTYPE name SYSTEM “name.dtd”>

➢ Specifying an internal subset is optional.

➢ An XML document might conform to a DTD that uses only an internal

subset, only an external subset, or both. If you do specify an internal subset,

it appears between the [and], immediately following the system identifier

40

Public Identifiers

➢ Public identifiers provide a second mechanism to locate DTD resources. Its

syntax:

<!DOCTYPE root PUBLIC FPI-identifier URL>

➢ Using PUBLIC keyword allows non-specific reference to the DTD via a

URL, even perhaps via secondary URL

➢ Example: BookCatalog DTD could become a well-known publishing

industry standard, in which case we might refers to it using the following

declaration:

<!DOCTYPE BookCatalog “-//publishingconsortium//bookcatalog”

“ http://www.wrox.com/dtd/bookcatalog.dtd”>

➢ In this example, the xml application would have more flexibility in locating

the DTD.

➢ If the parser or application cannot locate the DTD using primary (PUBLIC)

location, the second (SYSTEM) location is used. Note that SYSTEM

keyword is implied

➢ According to the XML specification, public identifiers can follow any

format; however, a commonly used format is called Formal Public

Identifiers (FPIs).

➢ The syntax for FPIs matches the following basic structure:

-//Owner//Class Description//Language//Version

➢ At the most basic level, public identifiers function similarly to namespace

names, but public identifiers cannot be used to combine two different

vocabularies in the same document. This makes namespaces much more

powerful than public identifiers

An example of External DTD is given below

(i) The first step is to define external DTD file called “address.dtd”. Its

content is shown below:

<!ELEMENT address (name, company, phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

(ii) Next, create an “address.xml” file and link the “address.dtd” as shown

below:

<?xml version="1.0" encoding="UTF-8" standalone="no”?>

<!DOCTYPE address SYSTEM "address.dtd">

<address>

41

<name>Dr. John</name>

<company>The Palm</company>

<phone> (044) 123-4567</phone>

</address>

Combined DTD: Both Internal and External Together

➢ You can use both an internal DTD and an external one at the same time. This

could be useful if you need to adhere to a common DTD, but also need to

define your own definitions locally.

➢ This is an example of using both an external DTD and an internal one for the

same XML document. The external DTD resides in "tutorials.dtd" and is

called first in the DOCTYPE declaration. The internal DTD follows the

external one but still resides within the DOCTYPE declaration:

➢ Here, I've added a new element called "summary". This element must be

present under the "tutorial" element. Because this element hasn't been

defined in the external DTD, I need to define it internally. Once again, we're

setting the "standalone" attribute to "no" because we rely on an external

resource.

tutorials.dtd

<!ELEMENT tutorials (tutorial)+>

<!ELEMENT tutorial (name, url)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ATTLIST tutorials type CDATA #REQUIRED>

tutorials.xml

<?xml version="1.0" standalone="no"?>

<!DOCTYPE tutorials SYSTEM "tutorials.dtd"

[<!ELEMENT tutorial (summary)>

<!ELEMENT summary

(#PCDATA)>

]>

<tutorials>

<tutorial>

<summary>Best XML tutorial on the web! </summary>

</tutorial>

<tutorial>

<summary>Best HTML tutorial on the web! </summary>

</tutorial>

</tutorials>

42

5.6 BASIC UNITS OF DTD

There are four basic keywords used in DTD declaration, which is listed below:

➢ Element declarations (ELEMENT)

➢ Attribute declarations (ATTLIST)

➢ Entity declarations (ENTITY)

➢ Notation declaration (NOTATION)

Keyword Description

ELEMENT Declare an XML element type name and its permissible

sub elements(children)

ATTLIST Declare an XML element’s attribute names, plus permissible

and/or default attribute values

ENTITY Declare special character reference or text macro (similar to

C/C++ #define statement) and other repetitive content

from external source (similar to C/C++ #include statement)

NOTATION Declares external non-XML content (example: binary image

data) and external application that handle the content

Element Declarations

➢ When using a DTD to define the content of an XML document, you must

declare each element that appears within the document.

➢ An element declaration can have one of two different forms:

<!ELEMENT element-name category>

- used for categories: EMPTY, ANY

<!ELEMENT element-name (element-content-model)>

- used for categories: #PCDATA, element, mixed

➢ An element’s content model defines the allowable content within the

element. An element may contain element children(sub-elements/child-

elements), text, a combination of children and text, or the element may be

empty.

➢ As far as the XML Recommendation is concerned, there are five categories

of element content as listed below:

EMPTY Element type may not contain any text or child elements,

only attributes are permitted

ANY Element type may contain any well-formed XML data. This

could include character data

#PCDATA Element type can contain text (character data) only

Element Element type contain only child elements, but no additional

text is permitted within this element type

Mixed Element type may not contain text or child elements

43

➢ Let’s look at each of these content models in more detail.

EMPTY

➢ Element declared as EMPTY cannot contain anything, except attributes. It

means that the element neither contain textual data nor contain child element

within it. Such as elements are known as empty elements

Syntax: <!ELEMENT element-name EMPTY>

Example: <!ELEMENT eof EMPTY>

Valid xml: <eof />

o It could be alternatively written as <eof></eof>

Invalid xml: <eof>end of file</eof>

ANY

➢ Element declared as ANY can either contain textual data or contains child

element within it or combination of both

Syntax: <!ELEMENT element-name ANY>

Example: <!ELEMENT PersonName ANY>

Valid xml:

(i) <PersonName> John T Mesia Dhas </PersonName>

(ii) <PersonName>

 John T Mesia Dhas

<father>Thanka Nadar</father>

 </PersonName>

(iii) <PersonName> <Dr/>

<FirstName> John T </FirstName>

<LastName> Mesia Dhas </LastName>

</PersonName>

PCDATA (Text only)

➢ Element declared as #PCDATA can only contain text data or character data.

The text contents of an element should not contain any special characters

such as <,>, &, ’, ” etc.

Syntax: <!ELEMENT element-name (#PCDATA)> Example:

 <!ELEMENT name (#PCDATA)>

44

Valid xml: <name> John</name>

Invalid xml: <name> John < Mesia Dhas </name>

Element only

➢ Element declared as element content can only contain other(child) elements,

but it cannot contain parsed character data

➢ When defining a content model with element content, you simply include

the allowable child elements within parentheses separated by comma

➢ Here

o The child elements are constrained to appear in specific sequence

(sequence list)

o Child elements are also constrained to choose only child elements

among several choice (choice list)

o The number of occurrences of child elements may be specified by

cardinality operators

Syntax:

<!ELEMENT element-name (child-element1, child- element2,…)>

Example:

<!ELEMENT address (name, street, area, city, pincode)>

<!ELEMENT names (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT pincode (#PCDATA)>

Valid xml: <address>

<name>Dr. John</name>

<street>1, MGR Street </street>

<area>Charles Nagar</area>

<city>Chennai</city>

<pincode>600072</pincode>

</address>

Invalid xml: <address>

<name>Dr. John</name>

<street>1, MGR Street </street>

<area>Charles Nagar</area>

<pincode>600072</pincode>

<city>Chennai</city>

</address>

Reason: element <pincode> must only appear after the element <city>

45

Mixed

➢ Element declared as mixed content can contain both text data as well as child

elements, or any other combination

➢ In mixed content model, child elements are constrained to character data plus

a simple list of valid child element types, and child element must be defined

with our any sequence or choice specification further

Example:

<!ELEMENT PersonName (#PCDATA, FatherName)>

➢ Valid xml:

<PersonName>

John

<FatherName>Thanka Nadar</FatherName>

</PersonName>

Operators Used with Content-Models

➢ Operators are used impose more restriction on the content of an

elements. DTD includes the following operators:

o List operators(sequence-list(,), choice(|), ())

o Cardinality operators (?, *, +)

➢ These operators are also called content model operators

List operators

There are two content model list operators. They are listed below:

Operator Syntax Description

,

(comma)

a,b - a followed by b Sequence: all the child elements

must appear in the specified order

Syntax: <!ELEMENT element-name (child-element1, child-element2,)>

|

(vertical

bar)

a | b - either a or b

- Choice: only one of the several child elements in

the list is permitted

Syntax: <!ELEMENT element-name (child1 | child2 | …)>

() (expression) An expression surrounded by parentheses is

treated as a unit and could have any one of the

following suffixes?, *, or +.

Example: The following example demonstrate feature of all the three list

operators

Let us look at an example of a simple five-element list for person’s name could

be declared as:

46

<!ELEMENT PersonName ((Mr | Ms | Dr), FirstName, MiddleName, LastName,

(Jr | Sr)) >

<!ELEMENT Mr EMPTY >

<!ELEMENT Ms EMPTY >

<!ELEMENT Dr EMPTY >

<!ELEMENT FirstName (#PCDATA) >

<!ELEMENT MiddleName (#PCDATA) >

<!ELEMENT LastName (#PCDATA) >

<!ELEMENT Jr EMPTY >

<!ELEMENT Sr EMPTY >

➢ In the above example, PersonName consist of five child-elements in a

specific sequence. But the two of its child elements are derived from a list of

mutually exclusive choice

➢ But there are only limited number values are available for Title and Suffix.

So that we could use choice list of empty elements to replace those two text-

containing elements

➢ Conforming XML document instance would now become:

<PersonName>

<Mr />

<FirstName>John<FirstName>

<MiddleName>T<MiddleName>

<LastName>Mesia Dhas</LastName>

<Sr />

</PersonName>

Cardinality operator

➢ Document can be controlled using the cardinality operators The number of

times a child XML Element appears within the XML.

Operator Syntax Description

[none] A If no cardinality operator character is used then it

indicates that the element must appear once and only

once. This is the default behavior for elements used in

content models(required)

? a? Indicates that the element may appear either zero or one

time

only – optionally singular element

+ a+ Indicates that the element may appear one or more

times –

optional elements

* a* Indicates that the element may appear zero or more

times. –required elements

47

Example

➢ Let us look at s to use some cardinality operators.

ELEMENT Address (name, street, area, city, mobile? email*) >

<!ELEMENT name (#PCDATA) >

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT mobile (#PCDATA) >

<!ELEMENT email (#PCDATA)>

➢ In the above example, <AddressList> may contain one or more <Address>

as its child element

➢ Each <Address> element may contain seven child elements in the given

sequence, in that <mobile> and <email> are optional

➢ <mobile> can appear zero or one time only

➢ <email> can appear zero or more times

➢ Conforming XML document instance would now become:

<AddressList>

<Address>

<name>Dr. John <name>

<street>1, MGR Street</street>

<area>Charles Nagar</area>

<city>chennai</city>

<email>jtmdhasres@gmail.com</email>

<email>jtmdhas@ymail.com</email>

</Address>

<Address>

<name>Dr. Shiny<name>

<street>10, Kannadasan Street </street>

<area>Charles Nagar </area>

<city>chennai</city>

<mobile>9962143526</mobile>

</Address>

</AddressList>

Attribute (ATTLIST) declaration

➢ In DTD, XML element attributes are declared with an ATTLIST declaration.

Attribute declaration has the following syntax:

<!ATTLIST elementName attribName attribType attribDefault default-

value>

➢ Were

o elementName – is the name of the element to which the attribute belongs to

48

o attribName – is the name of the attribute

o attribType – possible values for attribType are listed in the following table

Type Description

CDATA - Indicates that the value of attribute is character data (text

string)

ID - Indicates that the value of attribute must uniquely identify

the containing element.

- This must be the text string that conforms to all XML name

rules. It is similar to primary key in database

IDREF - Indicates that the value of attribute is a reference to ID of

another element

IDREFS - Indicates that the value of attribute is a list of ID of

another element

ENTITY - Indicates that the value of attribute is the name of a

predefined entity

- The unparsed entity might be an image file or some other

external resource such as an MP3 or some other binary file

ENTITIES - Indicates that the attribute value is a whitespace-

 separated list of ENTITY values

NMTOKEN - Indicates that the value of attribute is a valid XML name or

name token A name token that conforms to the xml name

rules

NMTOKENS - Indicates that the value of attribute is list of

 NMTOKENs delimited by whitespace

(en1|en2|...)

Enumerated

List

- Attribute value must be one of a series that is explicitly

defined in the DTD

NOTATION An attribute value must be a notation type that is explicitly

declared elsewhere in the DTD

o attribDefault(attribute default) – ATTLIST uses the attribute default

parameter to indicate whether or not attribute’s presence is required, and if it

is not required , how parser should handle its absence. There are four different

attribute defaults listed below:

Value Explanation

default-

value

- The default value of the attribute

- The attribute may or may not appear in the instance of the

element

- If does not appear, the parser may supply default value

specified in the ATTLIST declaration

49

Syntax

<!ATTLIST element-name attribute-name attribute-type default-

value>

DTD example

<!ELEMENT employee (name, designation)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT designation (#PCDATA)>

<!ATTLIST employee department CDATA

"MCA">

Valid XML conforms to DTD

(i) In the following instance, attribute department is not specified, so parser

supply attribute department value as "CSE"

<employee>

<name>Dr. John</name>

<designation>Associate Professor</designation>

</employee>

(ii) In the following instance, attribute department is specified, so

 default-value "CSE" is ignored

<employee department="MBA">

<name>Vijay</name>

<designation>Professor</designation>

</employee>

#REQUIRED - The attribute is required

- The attribute must appear in every instance of the

element

Syntax

<!ATTLIST element-name attribute-name attribute-type #REQUIRED>

DTD example

<!ELEMENT person EMPTY>

<!ATTLIST person number CDATA #REQUIRED>

Valid XML conforms to DTD

 <person number="5677" />

Invalid XML

 <person />

#IMPLIED - The attribute is optional. The attribute may or may

 not appear in the instance of the element

Syntax

<!ATTLIST element-name attribute-name attribute-type #IMPLIED>

50

DTD example

 <!ELEMENT contact EMPTY>

 <!ATTLIST contact f a x CDATA #IMPLIED>

Valid XML conforms to DTD

<contact fax="044-284259" />

<contact />

#FIXED value - The attribute value is fixed

- The attribute may or may not appear in the instance of the

element. If the attribute does appear, its value must match

with those in the ATTLIST declaration

Syntax

<!ATTLIST element-name attribute-name attribute-type #FIXED “value”>

DTD example:

<!ELEMENT company EMPTY>

<!ATTLIST sender company CDATA #FIXED "Microsoft">

Valid XML

<sender company="The Palm" />

Invalid XML

<sender company="Sheeba Architects" />

(i) DTD Attribute Type : CDATA

- If attribute value is nothing more than plain text, then the attribute is declared

using CDATA type

DTD Example

<!ELEMENT PersonName EMPTY>

<!ATTLIST PersonName firstname CDATA #REQUIRED

 middlename CDATA #IMPLIED

 lastname CDATA #REQUIRED >

Valid XML

<PersonName firstname="John" lastname="Mesia Dhas" />

(ii) DTD Attribute Type: Enumerate values

➢ If an attribute has only limited set of values, then the attribute is declared

using enumerated list

➢ In the XML instance, the attribute value must exactly match any one of

the value in the enumerated list declared in the corresponding DTD

51

Syntax

<!ATTLIST element-name attribute-name (value1 | value2 | …) >

Example

<!ELEMENT PersonName (FirstName,LastName) >

<!ELEMENT FirstName (#PCDATA) >

<!ELEMENT LastName (#PCDATA) >

<!ATTLIST PersonName honorific (Mr | Ms | Dr |Rev) #IMPLIED

suffix (Jr | Sr) #IMPLIED >

Valid XML

<PersonName honorific=”Dr” suffix=”Jr”>

<FirstName>John T</FirstName>

<LastName>Mesia Dhas</LastName>

</PersonName>

(iii) DTD Attribute Type : ID

➢ The attribute type of ID is used specifically to identify elements. Because of

this, no two elements can contain the same value for attributes of type ID

Syntax

<!ATTLIST element_name attribute_name ID default_value>

 Example

<!ELEMENT mountains (mountain+) >

<!ELEMENT mountain (name) >

 <!ATTLIST mountain mountain_id ID #REQUIRED>

The following XML document would be valid, as it conforms to the above

DTD:

<mountains>

<mountain mountain_id="m10001">

<name>Mount Cook</name>

</mountain>

<mountain mountain_id="m10002">

<name>Cradle Mountain</name>

</mountain>

</mountains>

Invalid XML - The following XML document would be invalid because the

value of the "mountain_id" attribute is the same for both elements:

<mountains>

<mountain mountain_id="m10001">

<name>Mount Cook</name>

</mountain>

52

<mountain mountain_id="m10001">

<name>Cradle Mountain</name>

</mountain>

</mountains>

(iv) DTD Attribute Type : IDREF

The attribute type of IDREF is used for referring to an ID value of another

element in the document.

Syntax

<!ATTLIST element_name attribute_name IDREF default_value>

Example

<!ELEMENT employees (employee+) >

<!ELEMENT employee (name) >

<!ATTLIST employee employee_id ID #REQUIRED

manager_id IDREF #IMPLIED >

Valid XML - The following XML document would be valid, as it conforms to the

above DTD:

<employees>

<employee employee_id="e10001">

<name>Adersh</name>

</employee>

<employee employee_id="e10002" manager_id="e10001">

<name>Suresh</name>

</employee>

</employees>

Invalid XML - The following XML document would be invalid. This is

because the "manager_id" attribute of the second element contains a value that

isn't the same as a value of another element that contains an attribute with a type

of ID:

< employees>

<employee employee_id="e10001">

<name>K.Jeyachendran</name>

</employee>

<employee employee_id="e10002" manager_id="e10003">

<name>N.Krishnan</name>

</employee>

</employees>

(v) DTD Attribute Types : IDREFS

The attribute type of IDREFS is used for referring to the ID values of more than

one other element in the document. Each value is separated by a space.

Syntax:

53

<!ATTLIST element_name attribute_name IDREFS default_value>

Example:

<!ELEMENT individuals (individual+) >

<!ELEMENT individual (name) >

<!ATTLIST individual individual_id ID #REQUIRED

parent_id IDREFS #IMPLIED >

Valid XML - The following XML document would be valid, as it conforms to

the above DTD

<individuals>

<individual individual_id="e10001">

<name>Adesh </name>

</individual>

<individual individual_id="e10002">

<name>Suresh</name>

</individual>

<individual individual_id="e10003" parent_id="e10001 e10002">

<name>Ramesh</name>

</individual>

</individuals>

(vi) DTD Attribute Types : NMTOKEN

➢ An NMTOKEN (name token) is any combination of Name characters. It

cannot contain whitespace (although leading or trailing whitespace will be

trimmed/ignored

➢ While Names have restrictions on the initial character (the first character of

a Name cannot include digits, diacritics, the full stop and the hyphen), the

NMTOKEN doesn't have these restrictions

Syntax

<!ATTLIST element_name attribute_name NMTOKEN default_value>

Example

<!ELEMENT mountains (mountain+) >

<!ELEMENT mountain (name) >

 <!ATTLIST mountain country NMTOKEN #REQUIRED>

Valid XML - The following XML document would be valid, as it conforms to

the above DTD:

<mountains>

<mountain country="India">

<name>Mount Everest</name>

54

</mountain>

<mountain country="AU">

<name>Cradle Mountain</name>

</mountain>

</mountains>

Invalid XML - The following XML document would be invalid because the

value of the first attribute contains internal whitespace:

<mountains>

<mountain country="India">

<name>Mount Everest</name>

</mountain>

<mountain country="Australia">

<name>Cradle Mountain</name>

</mountain>

</mountains>

(vii) DTD Attribute Types : NMTOKENS

➢ The attribute type of NMTOKENS allows the attribute value to be made up

of multiple NMTOKENs, separated by a space.

Syntax:

<!ATTLIST element_name attribute_name NMTOKENS default_value>

Example

<!ELEMENT mountains (mountain+) >

<!ELEMENT mountain (name) >

<!ATTLIST mountains country NMTOKENS #REQUIRED>

Valid XML - The following XML document would be valid, as it conforms to

the above DTD:

<mountains country="India">

<mountain>

<name>Mount Everest</name>

</mountain>

<mountain>

<name>Thottabetta</name>

</mountain>

</mountains>

(viii) DTD Attribute Types – ENTITY

The attribute type of ENTITY is used for referring to the name of an entity

you've declared in your DTD

Syntax

55

<!ATTLIST element_name attribute_name ENTITY default_value>

Example

<!ELEMENT mountains (mountain+) >

<!ELEMENT mountain (name) >

 <!ATTLIST mountain photo ENTITY #IMPLIED>

<!ENTITY mt_cook_1 SYSTEM "mt_cook1.jpg">

Valid XML - The following XML document would be valid, as it conforms to

the above DTD

<mountains>

<mountain photo="mt_cook_1">

<name>Mount Cook</name>

</mountain>

<mountain>

<name>Cradle Mountain</name>

</mountain>

</mountains>

Invalid XML - The following XML document would be invalid. This is because

the "photo" attribute of the second element contains a value that hasn't been

declared as an entity:

<mountains>

<mountain photo="mt_cook_1">

<name>Mount Cook</name>

</mountain>

<mountain photo="None">

<name>Cradle Mountain</name>

</mountain>

</mountains>

(ix) DTD Attribute Types – ENTITIES

The attribute type of ENTITIES allows you to refer to multiple entity names,

separated by a space

Syntax

<!ATTLIST element_name attribute_name ENTITIES default_value>

Example:

 <!ELEMENT mountains (mountain+) >

 <!ELEMENT mountain (name) >

<!ATTLIST mountain photo ENTITIES #IMPLIED>

<!ENTITY mt_cook_1 SYSTEM "mt_cook1.jpg">

56

<!ENTITY mt_cook_2 SYSTEM "mt_cook2.jpg">

Valid XML - The following XML document would be valid, as it conforms to

the above DTD

<mountains>

<mountain photo="mt_cook_1 mt_cook_2">

<name>Mount Cook</name>

</mountain>

<mountain>

<name>Cradle Mountain</name>

</mountain>

</mountains>

Invalid XML - The following XML document would be invalid. This is because

in the first element, a comma is being used to separate the two values of the

"photo" attribute (a space should be separating the two values):

<mountains>

<mountain photo="mt_cook_1, mt_cook_2">

<name>Mount Cook</name>

</mountain>

<mountain>

<name>Cradle Mountain</name>

</mountain>

</mountains>

(x) DTD Attribute Types: NOTATION

➢ The attribute type of NOTATION allows you to use a value that has been

declared as a notation in the DTD. A notation is used to specify the format

of non-XML data. A common use of notations is to describe MIME types

such as image/gif, image/jpeg etc

Syntax

➢ To declare a notation

<!NOTATION name SYSTEM "external_id">

➢ To declare the attribute

<!ATTLIST element_name attribute_name NOTATION

 default_value>

Example

<!NOTATION GIF SYSTEM "image/gif">

<!NOTATION JPG SYSTEM "image/jpeg">

<!NOTATION PNG SYSTEM "image/png">

<!ENTITY SYSTEM "mt_cook1.jpg">

57

mt_cook_1

<!ELEMENT mountains (mountain+) >

<!ELEMENT mountain (name) >

<!ATTLIST mountain photo ENTITY

 #IMPLIED photo_type NOTATION (GIF

| JPG | PNG) #IMPLIED >

➢ In the DTD, we have specified that the value of the "photo_type" attribute can

be one of the three values supplied. The following XML document would be

valid, as it conforms to the above DTD:

<mountains>

<mountain photo="mt_cook_1" photo_type="JPG">

<name>Mount Cook</name>

</mountain>

<mountain>

<name>Cradle Mountain</name>

</mountain>

</mountains>

5.6 DTD ENTITY TYPES

➢ These are the key to replaceable content in both DTDs and XML

documents. A general entity reference is used in the target XML

document/s. The two main categroies of entities are:

o General entities - They are usable within any XML document

o Parameter entities – They may only be used in DTDs
General entities

➢ There are two kinds of general entities. They are:

• Parsed entities

• Unparsed entites

Parsed entities

➢ It can be either internal or external.

➢ Internal: The actual replacement text is included with in the xml document

➢ External: the actual replacement text is located in external file or other

resource

➢ The general syntax of parsed entity declaration is given below:
<!ENTITY entity-name "replacement-text">

➢ Once parsed entity is defined it can be referenced using the following

syntax:
&entity-name;

➢ An example parsed entity declaration is given below:

58

<!ENTITY COPY "©">

➢ A reference of parsed entity from xml document is given below:
<copyright>©</copyright>

Unparsed entites

➢ To embed non-XML data (such as an image) into your XML document, you

need to treat it as an external unparsed entity. To declare an external

unparsed entity, you use the <!ENTITY> declaration along with the NDATA

keyword.

➢ Unparsed entities are always external. All unparsed entities can be

referenced only from attributes of types ENTITY or ENTITIES

➢ All unparsed entities must have an associated notation, which is also

identified by name

➢ Syntax to declare unparsed entities:

<!ENTITY name SYSTEM value NDATA TYPE>

➢ You can also use public external unparsed entities by using the PUBLIC

keyword along with a Formal Public Identifier (FPI):
<!ENTITY name PUBLIC FPI value NDATA TYPE>

Example

➢ Here's an example of a private external unparsed entity. Here, we declare a

new notation named "JPG" for the "image/jpeg" MIME type. Then we

declare an external unparsed entity called "mt_cook_1" that refers to an

image file called "mt_cook1_jpg". We then create a new attribute of type

ENTITY - this means that we can now use this attribute in our XML

document to refer to the unparsed external entity.

//definition of notation

<!NOTATION JPG SYSTEM "image/jpeg">
//definition of unparsed entities
<!ENTITY mt_cook_1 SYSTEM "mt_cook1.jpg" NDATA JPG>
//declaration of attribute of ENTITY type
<!ATTLIST mountain photo ENTITY #IMPLIED>

➢ After declaring the external unparsed entity in our DTD and creating an

attribute of type ENTITY, we can now embed it in our XML document:

<mountains>

<!-- reference of unparsed entity -->

<mountain photo="mt_cook_1">

<name>Mount Cook</name>

</mountain>

59

<mountain>

<name>Cradle Mountain</name>

</mountain>

</mountains>

Parameter entities

➢ These types of entities are used extensively in DTDs and must always parsed

entities. Parameter entities are always convenient shorthand for repetitive

DTD declaration

➢ Parameter Entities used within the DTD itself. In other words, you can

create an entity that can be used within your DTD declarations themselves.
Syntax

➢ When creating a parameter entity, you need to insert a percentage sign (%)

between

ENTITY, and the name of the entity as shown below

<!ENTITY % entity-name "replacement-text">

➢ You can also declare external parameter entities. You do this using

the following syntax

➢ Declaration of Private entity:

<!ENTITY % name SYSTEM uri>

➢ Declaration of Public entity:

<!ENTITY % name PUBLIC FPI uri>

➢ Once the parameter entity is defined, it can be referenced using the

following syntax:

%entity-name;

<!ENTITY % idfef_req “IDREF #REQUIRED”>

<!ATTLIST book bookid ID #REQUIRED

publisher % idfef_req ;>

5.7 XML CONDITIONAL DTD SECTIONS

➢ Conditional sections of a DTD are defined using the <![INCLUDE[]]> tag

to include the section or <![IGNORE[]]> to exclude the section.

➢ The format of conditional sections in a DTD is as follows:

 <![(INCLUDE|IGNORE) [DTD-Declarations]]>

➢ Where DTD-Declarations—must be any valid DTD declarations

or definitions. An example is given below:

 <![INCLUDE [

<!ELEMENT summary (comments*,title,shortdesc)>]]>

<!%[IGNORE[<!ELEMENT summary (title,shortdesc)>]]>

60

➢ DTD declaration within the INCLUDE sections are used for validation by

parser

➢ DTD declaration within the IGNORE sections are read, but not processed

by parser

➢ Conditional sections are typically declared using parameter

entities, and then referenced in other declarations for enhancing

reusability.

➢ In the following example, an external DTD specifies different

contents for draft and release (the comments element is not present

in release) .

5.8 LIMITATION OF DTDS

➢ The DTD has several shortcomings. First, a DTD document does not have to

be coded in XML. That means that a DTD is itself not an XML document.

➢ Second, the data types available to define the contents of an attribute or

element are very limited in DTD

➢ Some limitation of DTD include:

➢ DTDs are not extensible

 DTD describes the rules of an XML vocabulary

 All those rules must be present in single DTD

 There is no mechanism for inclusion of mechanism from multiple

sources

 So not suitable for distributed environment

➢ Only one DTD may be associated with each XML document

 large DTDs are hard to read and maintain

➢ DTD do not work well with XML namespace

 All element names are global

–Is <name> for people or companies?

–can’t declare both in the same DTD

➢ Very week data typing

 There are no constraints imposed on the kind of data(int,

float, string, date, etc) allowed within XML Element and

Attribute, so data typing is not possible

➢ Limited content model description

o No OO type object inheritance

 Describing one element type in terms of another is not possible in

DTD

➢ An XML document can override or ignore an external DTD using internal

subset

 Since the internal DTD has precedence over the external

subset, there is no assurance that the rules of a DTD will

61

be followed by XML document with which it is

associated

➢ Non-XML syntax

 They are not written in XML syntax, which means you

have to learn a new syntax in order to write them

 DTD do not use well-formed XML Syntax

 Most of the DTD represented in Extended Backus Naur Form

(EBNF)

➢ No DOM supports

 DOM is commonly used way to manipulate XML data, but it does

not

handle EBNF and provides no access to the rules of

document model in the DTD

➢ Relatively few older and more expensive tools

 DTD’s design goal of interoperability with SGML and HTML,

XML

 However, most SGML tools are both expensive and complex

All xml document is comprised of unit of storage called entities. For example,

document entity server as the entry point for an XML parser

The internal and external subset of the DTD are also entities, but unnamed one.

Other types of entities are always identified and referred to by name.

these are key replaceable content in both DTD

<!ENTITY % draft "IGNORE">

<!ENTITY % release "INCLUDE">

<![%draft;[<!ELEMENT summary (comments*,title,shortdesc)>]]>

<!%[release;[<!ELEMENT summary (title,shortdesc)>]]>

<!ELEMENT comments (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT shortdesc (#PCDATA)>

62

CHAPTER 6

SCHEMA

1. XML SCHEMA

The purpose of an XML Schema is to define the legal building blocks of an XML

document:

• The elements and attributes that can appear in a document

• The number of (and order of) child elements

• Data types for elements and attributes

• Default and fixed values for elements and attributes

2. WHY TO USE XML SCHEMA INSTEAD OF DTD?

1. XML Schemas Support almost all data types available in every

programming language

- One of the greatest strengths of XML Schemas is the support for data types, which

makes easier:

▪ To describe allowable document content

▪ To validate the correctness of data

▪ To define data facets (restrictions on data)

▪ To define data patterns

2. XML Schemas use XML Syntax:

- Another great strength about XML Schemas is that they are written in XML, so

that:

▪ You don't have to learn a new language

▪ You can use your XML editor to edit your Schema files

▪ You can use your XML parser to parse your Schema files

▪ You can manipulate your Schema with the XML DOM

▪ You can transform your Schema with XSLT

3. XML Schemas are extensible for future additions, because they are

written in XML.

- With an extensible Schema definition, you can:

▪ Reuse your Schema in other Schemas

▪ Create your own data types derived from the standard types

▪ Reference multiple schemas in the same document

4. XML Schemas supports Secure Data Communication

5. XSD is richer and more powerful than DTD.

6. XSD supports namespaces.

63

▪ Schema offers multiple vocabulary support based on namespace in xml

7. XSD is W3C recommendation.

8. XSD offers inheritance supports

▪ New data type can be defined, which inherits feature from existing types,

which may be pre-defined or user defined

9. Dynamic schema support

▪ Schema can be selected and modified dynamically

3. CREATING XML SCHEMAS

The following Table shows a complete list of every element the XML Schema Definition

Language supports. Table shows a complete list of every element the XML Schema

Element Name Description

All Indicates that the contained elements may appear in

any order within a parent element.

Any Indicates that any element within the specified namespace

may appear within the parent element’s definition. If a type is

not specifically declared, this is the default

anyAttribute Indicates that any attribute within the specified namespace may

appear within the parent element’s definition

annotation Indicates an annotation to the schema

Appinfo Indicates information that can be used by an application.

Attribute Declares an occurrence of an attribute

attributeGroup Defines a group of attributes that can be included within a

parent element

Choice Indicates that only one contained element or attribute may

appear within a parent element

complexContent Defines restrictions and/or extensions to a complexType

complexType Defines a complex element’s construction

documentation Indicates information to be read by an individual.

Element Declares an occurrence of an element

Extension Extends the contents of an element

Field Indicates a constraint for an element using XPath

Group Logically groups a set of elements to be included together

within another element definition.

import Identifies a namespace whose schema elements and attributes

can be referenced within the current schema

include Indicates that the specified schema should be included in the

target namespace

Key Indicates that an attribute or element value is a key within the

specified scope

64

Keyref Indicates that an attribute or element value should correspond

with those of the specified key or unique element

List Defines a simpleType element as a list of values of a specified

data type

notation Contains a notation definition

redefine Indicates that simple and complex types, as well as groups and

attribute groups from an external schema, can be redefined

restriction Defines a constraint for the specified Element

schema Contains the schema definition

selector Specifies an XPath expression that selects a set of elements for

an identity constraint

sequence Indicates that the elements within the specified group must

appear in the exact order they appear within the schema

simpleContent Defines restrictions and/or extensions of a simpleType

element

simpleType Defines a simple element type

Union Defines a simpleType element as a collection of values from

specified simple data types

unique Indicates that an attribute or element value must be unique

within the specified scope

4. SCHEMA DATA TYPES

 XML Schcma support almost all data types present in every

programming language.

 XML Schema provides two basic kinds of data-types:

(i) primitive data types – Those that are not defined in terms of other datatypes

(ii) derived data types – Those that are defined in terms existing data types

Primitive data types

 Primitive data type can be used for element or attribute values, but

cannot contain child elements, primitive type is always built-in

 The following primitive data types that are built-in to xml schema

Data type Explanation

Decimal Decimal number (infinite precision)

Float Single-precision floating-point number (32-bit)

Double Double-precision floating-point number (64-bit)

Boolean Boolean value

String Arbitrary text string

URI reference A standard Internet URI

65

recurringDuration A recurring duration of Time

ID XML 1.0 Specification ID type

IDREF XML 1.0 Specification IDREF type

ENTITY XML 1.0 Specification ENTITY type

NOTATION Similar to DTD notation attribute type

QName A legal QName string

Derived data types

 A derived data types in one that is defined in term of an existing types

known as base type

 Derived types may have attributes and may have element or mixed content

 New types may be derived from either a primitive type or another derived

type. For

 Example integer are subset of real number. The following definition in turn

derive an even more restricted type of integers:

<simpleType name=”negativeInteger” base=”xsi:integer”>

<minInclusive value=”unbounded” />

<maxInclusive value=”-1” />

</simpleType>

The built-in derived types are listed below:

Data type Explanation

Integer Integers (infinite precision)

positiveInteger Positive integers (infinite precision)

negativeInteger Negative integers (infinite precision)

nonPositiveInteger Negative integers including 0 (infinite precision)

nonNegativeInteger Positive integers including 0 (infinite precision)

Byte Integer represented by 8 bits

unsignedByte Integer represented by 8 bits (no symbols)

Short Integer represented by 16 bits

unsignedShort Integer represented by 16 bits (no symbols)

Int Integer represented by 32 bits

unsignedInt Integer represented by 32 bits (no symbols)

Long Integer represented by 64 bits

unsignedLong Integer represented by 64 bits (no symbols)

language A natural language identifier

Name Name of the data type

NCName Non-colonized name

66

Built-in derived types Representing Dates and Times

Name Explanation

Time Time of day

dateTime Date and time of day

Date Date

gYear Year

gYearMonth Year and month

gMonth Month

gMonthDay Month and day

gDay Day

DTD-Compatible built-in derived types

Name Explanation

IDREFS XML 1.0 Specification IDREFS type

ENTITIES XML 1.0 Specification ENTITIES type

NMTOKEN XML 1.0 Specification NMTOKEN type

NMTOKENS XML 1.0 Specification NMTOKENS type

From this, you can see that when declaring an attribute, you must specify a type.

This type must be one of the simple types

5. ATOMIC AND LIST DATA TYPES

There is one last division of schema data types. They are

(i) Atomic datatype (ii) list datatype

Atomic type

 it is a type that have values that are defined to be indivisible. Atomic and

primitive types are not the same.

 Numbers and strings are atomic types, since their values cannot be described

using any smaller pieces. Xml schema has not concept of character datatype –

thus string is atomic

 Atomic type may be either primitive or derived types. An example given below:

String – atomic primitive type

Date – atomic derived types

67

Integer – atomic derived types

List data type

 The list element defines a simple type element as a list of values of a specified

data type

 It is a type that have defined in terms of existing types. List data type has a value

that consist of length sequence of atomic value

 In Schema, one list cannot be made from other list. List types are always derived

types, which must be delimited by white space characters, just like IDREF or

NMTOKEN attributes types in the DTD

 List type must allows the presence of white space, but cannot use any white

space within the individual values of list items

 The syntax to define list type is given below:

<list id=ID itemType=QName any

attributes > (annotation?,(simpleType?))

</list>

 The ? sign declares that the element can occur zero or one time inside the list element

Attribute Description

id Optional. Specifies a unique ID for the element

itemType Specifies the name of a built-in data type or simpleType

element defined in this or another schema. This attribute

is not allowed if the content contains a simpleType

element, otherwise it is required

any attributes Optional. Specifies any other attributes with non-schema

namespace

 The following define simple type called "valuelist". Element of

"valuelist" type can store a list of integers:

<xs:simpleType name="valuelist">

<xs:list itemType="xs:integer"/>

</xs:simpleType>

 The following define <intValues> element of "valuelist" type that stores

list of integers:

<xs:element name="Marks" type="valuelist"/>

 Now, The <Marks> element in a document could look like this (notice that the

list will have five list items):

<Marks>100 34 56 80 77</Marks>

68

 Note: White space is treated as the list item separator!

6. ASPECTS OF DATATYPES IN SCHEMA

All schema data-types are comprised of three parts:

1. a value space

2. a lexical space

3. a set of facets

value space

 Each data-type has a range of possible values. For example, float data type has

value space that range from -∞ to +∞

 Derived types inherit their values from their base type, and may also constraint

that the value space to an explicit subset of base type.

 For example, derived data type such as integer would allow any positive or

negative whole number values, but without decimal fraction

 Value space always have certain facets (abstract properties) such as:

- Equality

- Bounds

- Order

- CardinalityNumberic

- Non-numeric

Lexical space

 It is a set of string literals that represent the value of a data type. In general

string literal have only one lexical representation, whereas numeric value may

have several equivalent and equally valid lexical representations

 Consider the following numeric literals:

“100” “1.0E2” and “102”

 all have different lexical values, but have identical numerical values in floating

point value space

Facets

 It is defining properties of data types which distinguish the data type from others

 It includes properties such as string length or bounds of numeric data type

Fundamental facets of data types

 There are five fundamental facets of data types

 Equality – similar to comparison operator in a programming language. With

69

these two values can be compared to determine whether equal or not. This is

applicable to all data types

 Order – only for some data types, there is defined relationship exists between

values. For examples, numbers may have ordered value. These properties can

be applied to both numeric and non-numeric types. For example, number 10

followed by 11, proceeded by 9

 Bounds

- Only ordered datatypes may be constrained to a range of values. Data type

values may have either lower or upper bound or both

- If value space has both upper and lower bounds, its data type is simply

considered to be bounded

- An example:

<simpleType name=”negativeInteger” >

<xs:restriction base="xs:integer">

<minInclusive value=”unbounded” />

<maxInclusive value=”-1” />

</xs:restriction>

</simpleType>

 Cardinality: minOccurs and maxOccurs

- Cardinality define the maximum number of allowed values within the value

space. To define cardinality we use minOccurs and maxOccurs attributes

- All value space may have an associated concept of cardinality, which derermine

number of values within the value space. A value space may be

o finite – list of enumerated values

o countably infinite

o uncountably infinite

- the following table shows comparision of DTD cardinality operator with schema’s:

DTD

Cardinality

Operator

minOccurs

value

minOccurs

value

No. of child

allowed

[none] 1 1 Only one

? 0 1 Zero or one

* 0 unbounded Zero or more

+ 1 Unbounded one or more

 Numberic type – In includes floating pointer and integers, etc

 Non-numeric type – string, date, and other non-numeric types

7. USER DEFINED DATA TYPES / DATA TYPE DEFINITION IN SCHEMA

- Other than predefined data types, schema allows you to define your data types.

70

Schema provides two types of data definitions:

o SimpleType

o complexType

<simpleType> definition

- with simple type definition, we can create derived data types, including those

were built in to the schema definition

- A simple type definition is a set of constraint on value space and lexical space

of primitive data types

The <simpleType> element

- The general syntax of <simpleType> is given below:

<simpleType [id = ID] [name = NCName] [any

attributes]> (annotation?, (restriction | list |

union))

</simpleType>

- Definition of a simple type determines the constraints on and information about

the values of attributes or elements with text-only content

- The ? sign declares that the element can occur zero or one time inside the

simpleType element

Attribute Description

Id Optional. Specifies a unique ID for the element

Name Specifies a name for the element. This attribute is required if

the simpleType element is a child of the schema element,

otherwise it is not allowed

any attributes Optional. Specifies any other attributes with non-schema

namespace

Scope of the data types:

- Each data type can be defined with two scope:

o Data type with global scope

o Data type with local scope

Data type with local scope (anonymous data-type)

- The data types is defined within the <element> or <attribute> will have local

scope. They can be referenced only from containing <element> or <attribute>.

These type are defined without name(anonymous data type)

- This example defines an element called "age" that is a simple type with a restriction.

71

The value of age can NOT be lower than 0 or greater than 100

<xs:element name="age">

<xs:simpleType name="ageType">

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="100"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

Data type with global scope (named data-type)

The data type defined within the <Schema> will have global scope. These data

type can be referenced from <element> or <attribute> defined in the schema

<schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="ageType">

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="100"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="age" type="ageType" />

</xs:schema>

8. CONSTRAINING FACETS / RESTRICTIONS ON DATA TYPES / REFINING

SIMPLE TYPES USING FACETS

- To give greater control over the definition of elements and attributes, the W3C

added acets to the XML Schema Definition Language.

- A facet can only be specified for a <simpleType> element, and it helps

determine the set of values for a <simpleType> element

- Constraining facets are those that limit the value space of a derived datatype,

which in turn limit that data type’s lexical space

- There are several constraining facets that may be applied to any appropriate

derived data type

- The following table list the list of constraining facets or restriction:

Constraint Description

Enumeration Defines a list of acceptable values

fractionDigits Specifies the maximum number of decimal places allowed.

Must be equal to or greater than zero

72

Length Specifies the exact number of characters or list items allowed.

Must be equal to or greater than zero

maxExclusive Specifies the upper bounds for numeric values (the value must

be less than this value)

maxInclusive Specifies the upper bounds for numeric values (the value must

be less than or equal to this value)

maxLength Specifies the maximum number of characters or list items

allowed. Must be equal to or greater than zero

minExclusive Specifies the lower bounds for numeric values (the value must

be greater than this value)

minInclusive Specifies the lower bounds for numeric values (the value must

be greater than or equal to this value)

minLength Specifies the minimum number of characters or list items

allowed. Must be equal to or greater than zero

Pattern Defines the exact sequence of characters that are acceptable

totalDigits Specifies the exact number of digits allowed. Must be greater

than zero

Whitespace Specifies how white space (line feeds, tabs, spaces, and carriage

returns) is handled

Enumeration: Restrictions on a Set of Values

- To limit the content of an XML element to a set of acceptable values, we would

use the enumeration constraint.

- The example below defines an element called "car" with a restriction. The only

acceptable values are: Audi, Golf, BMW:

<xs:element name="car">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Audi"/>

<xs:enumeration value="Golf"/>

<xs:enumeration value="BMW"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

length, minLength, maxLength: Restrictions on Length

- To limit the length of a value in an element, we would use the length,

maxLength, and minLength constraints

length:

- The <length> facet determines the number of units of length for the specified

data type. The nature of unit will vary, depending on base data type.

73

- For string data type length is number of Unicode point or characters. For binary

type the length is number of octet(8 bit byte)

- for list type length is the number of items in the list

- This example defines an element called "password" with a restriction. The value

must be exactly eight characters:

<xs:element name="password">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:length value="8"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

minLength – minimum number of unit permitted for the data types

maxLength – maximum number of unit permitted for the data types

- This example defines another element called "password" with a restriction. The

value must be minimum five characters and maximum eight characters:

<xs:element name="password">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:minLength value="5"/>

<xs:maxLength value="8"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

minInclusive, maxInclusive, minExclusive, maxExclusive: Restrictions on Values

- You can apply these facets to only data types that has an order relations

o“min” – define lower bound

o“max” – define upper bound

The following example defines an element called "age" with a restriction. The

value of age cannot be lower than 0 or greater than 120:

<xs:element name="age">

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="120"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

74

pattern - Restrictions on a Series of Values

- To limit the content of an XML element to define a series of numbers or letters

that can be used, we would use the pattern constraint

- Pattern is a regular expression(refex) that data-type’s lexical representation

must match for.

- An example defines simple type that uses pattern:

<xs:simpleType name="orderidtype">

<xs:restriction base="xs:string">

<xs:pattern value="[0-9]{6}"/>

</xs:restriction>

</xs:simpleType>

- The definition indicates that the value of the element or attribute must be a

string, it must be exactly six characters long, and those characters must be a

number from 0 to 9

- The example below defines an element called "letter" with a restriction. The

acceptable value is zero or more occurrences of lowercase letters from a to z:

<xs:element name="letter">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="([a-z])*"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

- relace the <pattern> definition in the above example with the following to

accept one or more occurrences of lowercase letters from a to z:

<xs:pattern value="([a-z])+"/>

- The next example defines an element called "gender" with a restriction. The

only acceptable value is male OR female:

<xs:element name="gender">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="male|female"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<fractionDigits> facet

 The <fractionDigits> facet specifies the maximum number of decimal digits in

the fractional part. The value for this facet must be a nonNegativeInteger

 For example, look at the following attribute declaration:

<xsd:attribute name=”SubTotal”>

<xsd:simpleType>

75

<xsd:restriction base=”xsd:decimal”>

<xsd:fractionDigits value=”2”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<whitespace> facet

- The <whiteSpace> facet specifies how whitespace is treated for the type

definition’s value. This particular facet can hold one of three values:

o collapse – Specifying collapse indicates that all whitespace consisting of more

than a single space will be converted to a single space and that all leading and

trailing blanks will be removed

o preserve - A value of preserve leaves the value as is

o replace - Assigning a value of replace causes all tabs, line feeds, and carriage

returns to be replaced with a single space.

<xsd:complexType> - COMPLEX TYPE DEFINITION

- A complex type definition specify element content model, which is much better

than content model of DTD that describe attributes and children of particular

element type

- A complex type definition can be extension or restriction of simple or complex

base types

- A complex type can extends another type by appending additional content

model declaration or additional attribute declaration

<complexType id=ID name=NCName

 abstract=true|false mixed=true|false

block=(#all|list of (extension|restriction))

final=(#all|list of (extension|restriction)) any

attributes> (annotation?,(simpleContent|complexContent|

((group|all|choice|sequence)?,((attribute|attributeGroup)*,

anyAttribute?))))

</complexType>

- The ? sign declares that the element can occur zero or one time, and the * sign

declares that the element can occur zero or more times inside the complexType

element

Attribute Description

Id Optional. Specifies a unique ID for the element

name Optional. Specifies a name for the element

76

abstract Optional. Specifies whether the complex type can be

used in an instance document. True indicates that an

element cannot use this complex type directly but

must use a complex type derived from

this complex type. Default is false

mixed Optional. Specifies whether character data is allowed

to appear between the child elements of this

complexType element. Default is false. If a

simpleContent element is a child element, the mixed

attribute is not allowed!

block Optional. Prevents a complex type that has a

specified type of derivation from being used in

place of this complex type. This value can contain

#all or a list that is a subset of extension or

restriction:

• extension - prevents complex types derived by

extension

• restriction - prevents complex types derived by

restriction

• #all - prevents all derived complex types

final Optional. Prevents a specified type of derivation of this

complex type element. Can contain #all or a list that is

a subset of extension or restriction.

• extension - prevents derivation by extension

• restriction - prevents derivation by restriction

• #all - prevents all derivation

any attributes Optional. Specifies any other attributes with non-

schema namespace

A complex type definition:

- Provides a mechanism to validate a document instance containing that type

- Describe the content of an element type, which may be element only, text only,

mixed, or empty

- Describes element’s attribute existence and content

- Derives it definition from another simpleType or complexType

- Control the ability to derive additional types.

- Similar to <simpleType>, <complexType> can be defined with global scope or

local scope

- A <complexType> element in the XML Schema Definition Language may

contain only

77

- one of the following elements:

• all

• choice

9. CREATING XML SCHEMA

- Step 1: The following declaration define complex type with local

scope(anonymous type declaration)for validating structure of the note.xml

file:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.xyz.com" >

<xs:element name="note">

<xs:complexType>

<xs:sequence>

<xs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>

<xs:element name="heading" type="xs:string"/>

<xs:element name="body" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Step 2: A Referencing an XML Schema from XML document(or) linking Schema

with XML Document

<?xml version="1.0"?>

<note xmlns="http://www.xyz.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.xyz.com note.xsd">

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

78

10. COMPONENTS OF XML SCHEMA

 The <schema> Element

 The <element> Element

 The <attribute> Element

 The <simpleType> Element

 The <complexType> Element

 The <annatotation>

o The <documentation> Element

 o The <appInfo> Element

 The <schema> element is the root element of every XML Schema.

 The <schema> element may contain some attributes.

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.xyz.com"

elementFormDefault="qualified">

 It indicates that the elements and data types used in the schema come from

the “http://www.w3.org/2001/XMLSchema” namespace.

 It also specifies that the elements and data types that come from the

"http://www.w3.org/2001/XMLSchema" namespace should be prefixed with xs

This fragment: targetNamespace="http://www.xyz.com"

 indicates that the default namespace is "http://www.xyz.com".

This fragment: elementFormDefault="qualified"

 indicates that any elements used by the XML instance document which

were declared in this schema must be namespace qualified.

Referencing a Schema in an XML Document

This XML document has a reference to an XML Schema:

<?xml version="1.0"?>

<note xmlns="http://www.xyz.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.xyz.com note.xsd">

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

79

The following fragment:

xmlns="http://www.xyz.com"

 Specifies the default namespace declaration. This declaration tells the schema- validator

that all the elements used in this XML document are declared in the

"http://www.xyz.com" namespace

 You can use the schemaLocation attribute. This attribute has two values, separated

by a space. The first value is the namespace to use. The second value is the location of

the XML schema to use for that namespace:

xsi:schemaLocation="http://www.xyz.com note.xsd"

<xs:element> Element

The <xs:element> tag is used to describe every elements in your XML document.

With this tag you can describe both element of simple types or element of

complex types The general syntax of <xs:element> is given below:

<element id=ID name=NCName ref=QName type=QName

 substitutionGroup=QName default=string

fixed=string form=qualified|unqualified

maxOccurs=nonNegativeInteger|unbounded

minOccurs=nonNegativeInteger nillable=true|false

abstract=true|false

block=(#all|list of (extension|restriction)) final=(#all|list of

(extension|restriction)) any attributes>

annotation?,(simpleType|complexType)?,(unique|key|keyref)*

</element>

- The ? sign declares that the element can occur zero or one time, and the * sign

declares that the element can occur zero or more times inside the element.

-

Attribute Description

Id Optional. Specifies a unique ID for the element

Name Optional. Specifies a name for the element. This attribute is

required if the parent element is the schema element

Ref Optional. Refers to the name of another element. The ref attribute

can include a namespace prefix. This attribute cannot be used if

the parent element is the schema element

Type Optional. Specifies either the name of a built-in data type, or the

name of a simpleType or complexType element

80

substitutionGroup Optional. Specifies the name of an element that can be

substituted with this element. This attribute cannot be used if

the parent element is not the schema element

Default Optional. Specifies a default value for the element (can only

be used if the element's content is a simple type or text only)

Fixed Optional. Specifies a fixed value for the element (can only be

used if the element's content is a simple type or text only)

Form Optional. Specifies the form for the element. "unqualified"

indicates that this element is not required to be qualified with

the namespace prefix. "qualified" indicates that this element

must be qualified with the namespace prefix. The default

value is the value of the elementFormDefault attribute of the

schema element. This attribute cannot be used if the parent

element is the schema element

maxOccurs Optional. Specifies the maximum number of times this

element can occur in the parent element. The value can be

any number >= 0, or if you want to set no limit on the

maximum number, use the value "unbounded". Default

value is 1. This attribute cannot be used if the parent element

is the schema element

minOccurs Optional. Specifies the minimum number of times this

element can occur in the parent element. The value can be

any number >= 0. Default value is 1. This attribute cannot

be used if the parent element is the schema element

Nillable Optional. Specifies whether an explicit null value can be

assigned to the element. True enables an instance of the

element to have the null attribute set to true. The null attribute

is defined as part of the XML Schema namespace for

instances. Default is false

Abstract Optional. Specifies whether the element can be used in an

instance document. True indicates that the element cannot

appear in the instance document. Instead, another element

whose substitutionGroup attribute contains the qualified

name (QName) of this element must appear in this element's

place. Default is false

81

Block Optional. Prevents an element with a specified type of

derivation from being used in place of this element. This

value can contain #all or a list that is a subset of extension,

restriction, or equivClass:

• extension - prevents elements derived by extension

• restriction - prevents elements derived by restriction

• substitution - prevents elements derived by substitution

• #all - prevents all derived elements

 Final Optional. Sets the default value of the final attribute on the

element element. This attribute cannot be used if the parent

element is not the schema element. This value can contain #all

or a list that is a subset of extension or restriction:

• extension - prevents elements derived by extension

• restriction - prevents elements derived by restriction

• #all - prevents all derived elements

any attributes Optional. Specifies any other attributes with non-schema

namespace

XSD Simple Elements definition

- A simple element is an XML element that contains only text. It

cannot contain any other elements or attributes.

- The text can be of many different types. It can be one of the

types included in the XML Schema definition (boolean, string, date,

etc.), or it can be a custom type that you can define yourself.

- You can also add restrictions (facets) to a data type in order to

limit its content, or you can require the data to match a specific

pattern.

- The syntax for defining a simple element is:

<xs:element name="elementname" type="data-type-

name"/>

- The following example is a schema with four simple elements

named "fname", "lname", "age", and "dateborn", which are of type

string, nonNegativeInteger, and date:

Schema Simple element definition Valid xml example

<xs:element name="sname" type="xs:string"/> <name>ram</name>

<xs:element name="age"

type="xs:nonNegativeInteger"/>

<age>22</age>

<xs:element name="dateborn" type="xs:date"/> <dateborn>1970-03-7

</dateborn>

82

<xs:element name="NativeIndia"

type="xs:boolean"/>

<NativeIndia> true

</NativeIndia>

Default and Fixed Values for Simple Elements

 Simple elements may have a default value OR a fixed value specified.

<element> with default value:

 A default value is automatically assigned to the element

when no other value is specified.

 In the following example the default value is "red":

<xs:element name="color" type="xs:string" default="red"/>

<element> with fixed value:

 A fixed value is also automatically assigned to the element, and

you cannot specify another value.

 In the following example the fixed value for company name element is

"panimalar":

<xs:element name="company Name" type="xs:string"

fixed="panimalar"/>

XSD Complex Elements definition

- An element’s type can be defined with either a <complexType> element, a

<simpleType> element, a <complexContent> element, or a

<simpleContent>

element

- Simple elements are defined with <simpleType>, where as

complex elements can be defined with <complexType> element

- Complex element definition describe structure of entire xml

document or the structure of complex elements.complex elmenents

will haves other elements as its children

- The following example defines complex element type called

<xsd:element name="PersonName">

<xsd:complexType content="elementOnly">

<xsd:sequence>

<xsd:element name="FirstName" type ="text"

minOccurs="1"/>

<xsd:element name="MiddleName" type ="text"

minOccurs="0"

maxOccurs="1" />

<xsd:element name="LastName" type ="text"

minOccurs="1" />

</xsd:sequence>

83

</xsd:complexType>

</xsd:element>

Valid XML that conforms to Schema:

<PersonName>

<FirstName>Rajarajan</FirstName>

<LastName>Rajendran</LastName>

</PersonName>

Declaring Attributes

- Attributes in an XML document are contained by elements. To

indicate that a complex element has an attribute, use the <attribute>

element of the XML Schema Definition Language.

- For instance, if you look at the following section from the

PurchaseOrder schema, you can see the basics for declaring an

attribute:

<xsd:complexType name=”ProductType”>

<xsd:attribute name=”Name” type=”xsd:string”/>

<xsd:attribute name=”Id” type=”xsd:positiveInteger”/>

<xsd:attribute name=”Price”>

<xsd:simpleType>

<xsd:restriction base=”xsd:decimal”>

<xsd:fractionDigits value=”2”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name=”Quantity”

type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:element name=”Product” type=”ProductType”

minOccurs=”1”

 maxOccurs=”unbounded”/>

Valid XML that conform to Schema:

<Product Name=”Soup” Id=”001254” Price=”1.33” Quantity=”1”/>

- The general syntax for defining attribute is given below:

84

<attribute id=ID

name=NCName ref=QName type=QName

default=string fixed=string

use=optional|prohibited|required

any attributes >

(annotation?,(simpleType?))

</attribute>

- When declaring an attribute, you must specify a type. This type

must be one of the simple types defined in schema

- The ? sign declares that the element can occur zero or one time

inside the attribute element)

(OR)

- Here’s the basic syntax for the <attribute> element:

<attribute name=”” type=”” [use=””] [fixed=””] [default=””]

[ref=””]/>

The use attribute can contain one of the following possible values:

• optional

• prohibited

• required

Attribute Desc

ripti

on

default Optional. Specifies a default value for the attribute. Default

and fixed attributes cannot both be present

Fixed Optional. Specifies a fixed value for the attribute. Default and

fixed attributes cannot both be present

Id Optional. Specifies a unique ID for the element

Name Optional. Specifies the name of the attribute. Name and ref

attributes cannot both be present

Ref Optional. Specifies a reference to a named attribute. Name

and ref attributes cannot both be present. If ref is present,

simpleType element, form, and type cannot be present

Type Optional. Specifies a built-in data type or a simple type.

The type attribute can only be present when the content

does not contain a simpleType element

Use Optional. Specifies how the attribute is used. Can be one

of the following values:

• optional - the attribute is optional (this is default)

• prohibited - the attribute cannot be used

• required - the attribute is required

85

any attributes Optional. Specifies any other attributes with non-schema

namespace

Attributes with Default and Fixed Values

- Attributes may have a default value OR a fixed value specified.

- A default value is automatically assigned to the attribute when no

other value is specified.

- In the following example the default value is "EN":

<xs:attribute name="lang" type="xs:string" default="EN"/>

- A fixed value is also automatically assigned to the attribute, and

you cannot specify another value for the attribute

<xs:attribute name="companyName" type="xs:string"

fixed="panimalar"/>

Optional and Required Attributes

Attributes are optional by default. To specify that the attribute is

required, use the "use" attribute:

<xs:attribute name="lang" type="xs:string" use="required"/>

Complete Schema example given below:

The following is an example of complete shcema definition, which

also include definition complex type, definition of complex element,

definition of attribute etc:

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:simpleType name="PersonTitle" base ="xsd:string">

<xsd:enumeration value ="Mr" />

<xsd:enumeration value ="Ms" />

<xsd:enumeration value ="Dr" />

<xsd:enumeration value ="Rev" />

</xsd:simpleType>

<xsd:complexType name="text" content ="textOnly"

base="xsd:string" derivedBy="restriction" />

<xsd:element name="PersonName">

<xsd:complexType content="elementOnly">

<xsd:choice>

<xsd:element name="SingleName" type="Text"

minOccurs="1"/>

<xsd:sequence>

86

<xsd:element name="FirstName" type ="text"

minOccurs="1"/>

<xsd:element name="MiddleName" type

="text" minOccurs="0"

maxOccurs="1" />

<xsd:element name="LastName" type ="text"

minOccurs="1" />

</xsd:sequence>

</xsd:choice>

<xsd:attribute name="honorific" type="PersonTitle" />

<xsd:attribute name="suffix">

<xsd:simpleType base="xsd:string">

<xsd:enumeration value="Jr" />

<xsd:enumeration value="Sr" />

</xsd:simpleType >

</xsd:attribute>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Valid XML that conforms to Schema:

(i) <PersonName honorific=”Mr” suffix=”Jr”>

<FirstName>Rajarajan</FirstName>

<LastName>Rajendran</LastName>

</PersonName>

(ii) <PersonName honorific=”Mr” suffix=”Jr”>

<SingleName>Rajarajan</SingleName>

</PersonName>

Anonymous Type Declarations

Sometimes within an XML schema it may not be necessary to create

a separate type definition for an element or attribute. In such cases,

you may use “anonymous” type declarations. Consider the following

example:

87

<xsd:element name="PersonName">

<xsd:complexType content="elementOnly">

<xsd:sequence>

<xsd:element name="FirstName" type ="text"

minOccurs="1"/>

<xsd:element name="MiddleName" type ="text"

minOccurs="0" maxOccurs="1" />

<xsd:element name="LastName" type ="text"

minOccurs="1" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

In the above example complex type defined within the element or

attribute, without name. This is referred to as anonymous type

declaration. This data type can be referemced only from containing

element or attribute

Outside of containing element or attribute it cannot be accessible

Specifying Mixed Content for Elements

- Element may have textOnly, elementOnly, empty, or mixed and

some contain elements and attributes

- You can also define element that contain both text as well as child

elements. To do this, mixed attribute of complexType must be set

to true. Elements based on this type definition can mix their

contents with both text and child elements.

- For instance, let’s examine the following sample XML document:

<Letter>

<Greeting>Dear Mr.<Name>John Smith</Name>.</Greeting>

Your order of <Quantity>1</Quantity>

<Product>Big Screen TV</Product> has been shipped.

</Letter>

- Notice the appearance of text among the child elements of

<Letter>. The schema for this XML document would appear as

follows:

<xsd:element name=”Letter”>

<xsd:complexType mixed=”true”>

<xsd:element name=”Greeting”>

88

<xsd:complexType mixed=”true”>

<xsd:element name=”Name”

type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

<xsd:element name=”Quantity”

type=”xsd:postiveInteger”/>

<xsd:element name=”Product” type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

Annotating Schemas

The annotation element is a top-level element that specifies schema

comments. The comments serve as inline documentation. You can add

information(label) that could be for either humber readable or machine

readable or both

The XML Schema Definition Language defines three new elements to

add annotations to an XML schema:

• <annotation> <appInfo> <documentation>

<annotation>

- It is a container element for both <appInfo> and <documentation>

- It can appear any where within a schema, usually first child of some other

element

<appInfo>

- this element includes schema description that read by another external

program

- this define label for machine consumption

<documentation>

- this element includes schema description that read by human

- This define label for human consumption

 Note: both <appInfo> and <documentation> cannot be used

alone, they must be used as children of the <annotation>

element

 The syntax:

<annotation id=ID any attributes > (appinfo|documentation)*

</annotation>

The following example describe the feature of <annotation>,

89

 <appInfo>,

<documentation>:

<?xml version="1.0" encoding="iso-8859-1"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema ">

<annotation>

<appInfo>Wrox Schema -Annotations example

</appInfo>

<documentation>Schema is Copyright 2000 by worx

press Ltd.

</documentation>

</annotation>

<element name="PersonName">

<complexType content ="elementsOnly ">

<annotation>

<documentation>

The use of the <SingleName > element solves the 'Cher'

problem.

</documentation>

</annotation>

<choice> ... </choice>

</complexType>

</element>

</schema>

Model Groups - <group>

- A model group is a logically grouped set of elements. It is used to

define a group of elements to be used in complex type definitions.

- It is portion of complex type definition that describe element’s

content model. A model group con consists of element declaration

wild cards, and other model groups:

- A model group can be constructed using one of the following XML

Schema Definition elements:

• <all>

• <choice>

• <sequence>

- Here’s the basic syntax for the <group> element:

<group name=”” [ID=””] [ref=””] [maxOccurs=””]

[minOccurs=””] >

(annotation?,(all|choice|sequence)?)

</group>

90

- The ? sign declares that the element can occur zero or one time

inside the group element.

- By default, the maxOccurs and minOccurs attributes are set to 1.

The following table describe various attrinute of group

Attribute Description

Id Optional. Specifies a unique ID for the element

Name Optional. Specifies a name for the group. This attribute is used

only when the schema element is the parent of this group

element. Name and ref attributes cannot both be present

Ref Optional. Refers to the name of another group. Name and ref

attributes cannot both be present

maxOccurs Optional. Specifies the maximum number of times the group

element can occur in the parent element. The value can be any

number >= 0, or if you want to set no limit on the maximum

number, use the value "unbounded". Default value is 1

minOccurs Optional. Specifies the minimum number of times the group

element can occur in the parent element. The value can be any

number >= 0. Default value is 1

any attributes Optional. Specifies any other attributes with non-schema

namespace

The following example defines a group containing a sequence of four elements

and uses the group element in a complex type definition:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:group name="custGroup">

<xs:sequence>

<xs:element name="customer" type="xs:string"/>

<xs:element name="orderdetails" type="xs:string"/>

<xs:element name="billto" type="xs:string"/>

<xs:element name="shipto" type="xs:string"/>

</xs:sequence>

</xs:group>

<xs:element name="order" type="ordertype"/>

<xs:complexType name="ordertype">

<xs:group ref="custGroup"/>

<xs:attribute name="status" type="xs:string"/>

</xs:complexType>

</xs:schema>

- Note:The <group> element can be used for both the definition of

group and any reference to the named group

91

All Groups- <all>

- The <all> element specifies that the child elements can appear in

any order within the parent element and that each child element can

occur zero or one time.

Syntax:

<all [ID=””] [ref=””] [maxOccurs=””] [minOccurs=””] [any

attributes...]> (annotation?,element*)

</all>

Attribute Description

Id Optional. Specifies a unique ID for the element

maxOccurs Optional. Specifies the maximum number of times the element

can occur. The value must be 1.

minOccurs Optional. Specifies the minimum number of times the element

can occur. The value can be 0 or 1. Default value is 1

any attributes Optional. Specifies any other attributes with non-schema

namespace

Example 1:

<xs:element name="person">

<xs:complexType>

<xs:all>

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname" type="xs:string"/>

</xs:all>

</xs:complexType>

</xs:element>

The example above indicates that the "firstname" and the "lastname"

elements can appear in any order but both elements MUST occur once

and only once

Valid XML that conforms to Schema:

(i) <Person>

<LastName>Rajendran</LastName>

<FirstName>Rajarajan</FirstName>

</Person>

 (ii)<Person>

<FirstName>Rajarajan</FirstName>

<LastName>Rajendran</LastName>

92

</Person>

Example 2:

<xs:element name="person">

<xs:complexType>

<xs:all minOccurs="0">

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname" type="xs:string"/>

</xs:all>

</xs:complexType>

</xs:element>

- The example above indicates that the "firstname" and the

"lastname" elements can appear in any order and each element

CAN appear zero or one time!

Choices

- Sometimes you might want to declare that any one of a possible

group of elements may appear within an element, but not all of

them. This is accomplished by using the

<choice> element of the XML Schema Definition Language

- The choice element allows only one of the elements contained in

the <choice> declaration to be present within the containing

element

Syntax:

<choice [ID=""] [ref=""] [maxOccurs=""] [minOccurs=""]

[any attributes...] >

(annotation?,(element|group|choice|sequence|any)*)

</choice> Example:

<xsd:element name="Person">

<xsd:complexType>

<xsd:choice>

<xsd:element name="SingleName" type="Text" minOccurs="1"/>

<xsd:sequence>

<xsd:element name="FirstName" type ="text" minOccurs="1"/>

<xsd:element name="MiddleName" type ="text" minOccurs="0"

maxOccurs="1" />

<xsd:element name="LastName" type ="text" minOccurs="1" />

93

</xsd:sequence>

</xsd:choice>

</xsd:complexType>

</xsd:element>

Valid XML that conforms to Schema:

(i) <Person>

<FirstName>Rajarajan</FirstName>

<LastName>Rajendran</LastName>

</Person>

(ii) <Person>

<FirstName>Ravi</FirstName>

<MiddleName> Raja</MiddleName>

<LastName>Rajendran</LastName>

</

Person>

<Person>

<SingleName>Rajendran</SingleName>

</Person>

Sequences

- The <sequence> element specifies that the child elements must

appear in the same order within the parent element, as specified in

the sequence list. Each child element can occur from 0 to any

number of times.

Syntax :

<sequence [ID=""] [ref=""] [maxOccurs=""] [minOccurs=""]

[any attributes...] >

(annotation?,(element|group|choice|sequence|any)*)

</sequence>

An example:

This example shows a declaration for an element called "personinfo",

which must contain the following five elements in order; "firstname",

"lastname", "address", "city", and "country":

<xs:element name="personinfo">

<xs:complexType>

<xs:sequence>

<xs:element name="firstname" type="xs:string"/>

94

<xs:element name="lastname" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Attribute Groups

- The attributeGroup element is used to group a set of attribute

declarations so that they can be incorporated as a group into

complex type definitions.

- Here’s the basic syntax for the<attributeGroup> element:

<attributeGroup [name=””] [ref=””]>

<attribute …/>

<attribute …/>

...

</attributeGroup> An example given below:

<attributeGroup name="PersonNameExtra">

<attribute name=”honorific”>

<simpleType base=”string”>

< enumeration value ="Mr." />

<enumeration value ="Ms." />

< enumeration value ="Dr." />

<enumeration value ="Rev." />

</ simpleType>

</attribute>

<attribute name=”suffix” >

<simpleType base=”string”>

<enumeration value="Jr." />

<enumeration value="Sr." />

</simpleType>

</attribute>

</attributeGroup>

<element name="PersonName">

< complexType>

<xsd:element name="SingleName" type="Text"

minOccurs="1"/>

<attributeGroup ref=”personNameExtra” />

95

</complexType>

</element>

Valid XML that conforms to Schema:

(i) <PersonName honorific =”Mr.” suffix=”Jr.”>

<SingleName>Rajarajan</SingleName>

</Person>

Targeting Namespaces

You can view an XML schema as a collection of type definitions and

element declarations targeted for a specific namespace. Namespaces

allow us to distinguish element declarations and type definitions of one

schema from another. We can assign an intended namespace for an

XML schema by using the targetNamespace attribute on the

<schema> element. By assigning a target namespace for the schema,

we indicate that an XML document whose elements are declared as

belonging to the schema’s namespace should be validated against the

XML schema

Example:

<xsd:schema targetNamespace=”http://www.eps-software.com/poschema”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns=”http://www.eps-software.com/poschema”

elementFormDefault=”unqualified”

attributeFormDefault=”unqualified”>

elementFormDefault and attributeFormDefault. These attributes can

possess one of two values:

• qualified

• unqualified

If a value of unqualified is specified or the

 elementFormDefault and attributeFormDefault attributes are

omitted, the elements or attributes that are not globally declared within the

schema (those that are not children of the <schema> element) do not require a

prefix within the XML instance document. However, if a value of qualified is

specified, all elements and attributes must have a prefix associated with them.

For instance, we could make a change to our PurchaseOrder schema and specify

that the elementFormDefault and attributeFormDefault attributes have a value

of qualified Comparison between DTD and schema

XML Schema <restriction> Element
The restriction element defines restrictions o n a simpleType,

96

simpleContent, or complexContent definition.

Syntax:

< restriction id=ID base=QName any attributes>

…

</restriction>

Example:

This example defines an element called "age" with a restriction.

The value of age can NOT be lower than 0 or greater than 100:

<xs:element name="age">

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="100"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

XML Schema <extension> Element

- The extension element extends an existing simpleType or

complexType element.Parent elements of <extension>one of the

following: simpleContent, complexContent

Syntax

<extension id=ID base=QName any attributes>

(annotation?,((group|all|choice|sequence)?,((attribute|attributeGroup)*,anyAt

tribute?)))

</extension>

Example

- The following example extends an existing simpleType “size” to

define new type

“jeans” by adding an attribute “sex”:

<xs:simpleType name="size">

<xs:restriction base="xs:string">

<xs:enumeration value="small" />

<xs:enumeration value="medium" />

<xs:enumeration value="large" />

</xs:restriction>

</xs:simpleType>

97

<xs:complexType name="jeans">

<xs:simpleContent>

<xs:extension base="size">

<xs:attribute name="sex">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="male" />

<xs:enumeration value="female" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:schema>

Example 2: The following example, extends an existing

complexType “personInfo” to define new complex type

“fullnameinfo” by adding three elements:

<xs:complexType name="personinfo">

<xs:sequence>

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="fullpersoninfo">

<xs:complexContent>

<xs:extension base="personinfo">

<xs:sequence>

<xs:element name="address" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="employee" type="fullpersoninfo"/>

98

Inheriting from Other Schemas

You can define a common piece for multiple XML schemas and

extend it from the individual schemas that need it. For this reason, the

W3C included the <include> and

<import> elements in the XML Schema Definition Language.

Through the use of these elements, you can effectively “inherit”

elements and attributes from the referenced schema

XML Schema <import> Element

 The import element is used to add multiple schemas with different

target namespace to a document. Parent elements for <import> is

schema

Syntax:

<import id=ID namespace=anyURI

 schemaLocation=anyURI …> (annotation?)

</import>

Attribute Description

Id Optional. Specifies a unique ID for the element

Namespace Optional. Specifies the URI of the namespace to import

schemaLocation Optional. Specifies the URI to the schema for the imported

namespace

any attributes Optional. Specifies any other attributes with non-schema namespace

- The <import> element doesn’t care what the target namespace is in

the referenced schema.

Example:

For example, we want the declaration of an <Address> element again

and again in multiple schema. However, we wouldn’t want to redefine

this element in each schema. Instead, it would be nice to have that

element declaration and type definition within a separate document as

shown in the following example.

Address.xsd

<?xml version="1.0"?>

<xsd:schema

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.address.org"

 xmlns=" http://www.address.org "

elementFormDefault="unqualified">

<xsd:complexType name="AddressType">

99

<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>

<xsd:element name="area" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

<xsd:element name="pincode" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Employee.xsd

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.person.org"

xmlns="http://www.person.org"

xmlns:adr=" http://www.address.org "

elementFormDefault="unqualified">

<xsd:import namespace=" http://www.address.org "

schemaLocation="Address.xsd"/>

<xsd:complexType name="Employee">

<xsd:sequence>

<xsd:element name="ENumber" type="xsd:string"/>

<xsd:element name="EName" type="xsd:string"/>

<xsd:element name="Address" type="adr:AddressType" />

</xsd:sequence>

</xsd:complexType></xsd:schema>

Note: taget namespace in both the schema are

different. They are:

targetNamespace="http://www.address.org"

targetNamespace="http://www.person.org"

XML Schema <include> Element

- The include element is used to add multiple schemas with the same

target namespace to a document.

- Syntax:

<include id=ID

schemaLocation=anyURI any

attributes > (annotation?)

</include>

100

- With included schemas, the included files must all reference the

same target namespace. If the schema target namespace doesn’t

match, the include won't work (or) the <schema> element in the

referenced XML schema is empty

- You can “inherit” any and all elements and attributes within the

XML schema using the <include> element

Example:

Address.xsd

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.person.org"

xmlns=" http://www.person.org "

elementFormDefault="unqualified">

<xsd:complexType name="AddressType">

<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>

<xsd:element name="area" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

<xsd:element name="pincode" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Employee.xsd

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.person.org"

xmlns="http://www.person.org"

elementFormDefault="unqualified">

<xsd:include schemaLocation="Person.xsd"/>

<xsd:complexType name="Employee">

<xsd:sequence>

<xsd:element name="ENumber" type="xsd:string"/>

<xsd:element name="EName" type="xsd:string"/>

<xsd:element name="Address" type="AddressType" />

</xsd:sequence>

</xsd:complexType></xsd:schema>

Note: tagetNamespace in both the schema are same, which is

targetNamespace="http://www.person.org"

101

11. SCHEMA VS DTD

- There are many differences between DTD (Document Type

Definition) and XSD (XML Schema Definition). In short, DTD

provides less control on XML structure whereas XSD (XML

schema) provides more control.

- The important differences are given below:

Feature DTD XSD

 DTD stands for Document Type

Definition.

XSD stands for XML Schema

Definition.

syntax DTD uses EBNF (Extended

Backus–Naur Form) syntax,

which is derived from SGML

syntax.

XSDs are written using XML syntax.

Data type

support

Weak: Supports only few data

types such as strings, name

token, ID, etc

- For element, it supports only

two types: #PCDATA or

CDATA

- For attributes, it supports 10

data types

XSD supports almost all datatypes all

data type available in modern

programming language.

Define almost 44 data type + your

own derived data type’

Name space

support

DTD doesn't support

namespace.

XSD supports namespace.

Extensibility DTD is not extensible. XSD is extensible.

inheritance No. New type cannot be derived

from existing type

Yes. New type can be derived from

existing type

DOM

support

No DOM support Extensive DOM supports

Content

model

Weak content model: DTD

provides less control on XML

structure.

You can define only simple

sequence and choice list. You can

only specify zero, one or many

child elements

Strong content model: XSD provides

more control on XML structure

You can specify exact number of

occurance of child elements with

minOccurs and maxOccrus attributre

Multiple

vocabulary

support

No- one DTD per document Yes – as many as needed, based upon

name space in xml

102

associating

with an

XML

document

using <!DOCTYPE> declaration Using Namespace declaration with

root elemtn of xml document

File suffix *.dtd *.xsd

Complexity

of structure

Medium Powerful (e.g. sets, element occurrence

constraints)

Adoption wide spread Data-centric applications like web

services

Dynamic

schema

No dynamic support, since

DTDs are read only

Schema can be dynamically selected

and modified at runtime

 XML Schemas were created to define more precise grammars than

with DTDs, in particular one can define Data Types and more

sophisticated element structures

 DTD supports 10 datatypes, mostly for attributes. XML Schema

supports 44 datatypes and in addition, you can define your own.

103

CHAPTER 7

THE X-FILES, X-PATH, X-POINTER, AND X-LINK

1. XPATH INTRODUCTION

 XPath is used to navigate through elements and attributes and find data within

your XML documents.

 XPath is a major element in W3C's XSLT standard.

 Using XPath, you can select one or more nodes in order to retrieve the data they

contain. XPath is used quite extensively with XSLT.

What is XPath?

 XPath is a syntax for defining parts of an XML document

 XPath uses path expressions to navigate in XML documents

 XPath contains a library of standard functions

 XPath is a major element in XSLT

 XPath is a W3C recommendation

XPath Path Expressions

XPath uses path expressions to select nodes or node-sets in an XML document.

These path expressions look very much like the expressions you see when you

work with a traditional computer file system.

XPath Standard Functions

XPath includes over 100 built-in functions. There are functions for string values,

numeric values, date and time comparison, node and QName manipulation,

sequence manipulation, Boolean values, and more.

XPath is Used in XSLT

XPath is a major element in the XSLT standard. Without XPath knowledge you

will not be able to create XSLT documents.

XPath is a W3C Recommendation

XPath became a W3C Recommendation 16. November 1999.

XPath was designed to be used by XSLT, XPointer and other XML parsing software.

104

2. XPATH TERMINOLOGY

XPath Nodes:

In XPath, there are seven kinds of nodes: element, attribute, text, namespace,

processing-instruction, comment, and document nodes.

XML documents are treated as trees of nodes. The top most element of the tree is

called the root element.

Look at the following XML document:

<?xml version="1.0" encoding="UTF-8"?>

<bookstore>

<book>

<title lang="en">Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

</bookstore>

Example of nodes in the XML document above:

• <bookstore> (root element node)

• <author>J K. Rowling</author> (element node)

• lang="en" (attribute node)

Atomic values

 Atomic values are nodes with no children or parent.

Relationship of Nodes

XPath Purpose

•

Since XPath is used for finding data within XML

documents, this enables you to write applications that

make use of the data within an XML document. In order

to use XSLT (to transform the contents of your XML

documents), you need to use XPath.

Other XML based languages such as XQuery and

XPointer also rely on XPath expressions, so XPath really

does play an important role when writing XML

applications.

XQuery
XPointer

XLink

• XPath

XSLT

105

 Consider the following example. We will describe relationship of the nodes

with the following example:

<book>

<title>Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

Parent:

 Each element and attribute has one parent.

 In the above example; the <book> element is the parent of the <title>, <author>,

<year>, and <price>

Children:

 Element nodes may have zero, one or more children.

 In the above example; the <title>, <author>, <year>, and <price> elements

are all children of the <book> element

Siblings:

 Nodes that have the same parent.

 In the above example; the <title>, <author>, <year>, and <price> elements

are all siblings

Ancestors:

 A node's parent, parent's parent, etc.

 In the above example; the ancestors of the <title> element are the <book>

element and the <bookstore> element

Descendants

 A node's children, children's children, etc.

 In the above example; descendants of the <bookstore> element are the

<book>, <title>, <author>, <year>, and <price> elements

XPath Syntax

XPath uses path expressions to select nodes or node-sets in an XML document.

The node is selected by following a path or steps

We will use the following XML document in the examples below.

<?xml version="1.0" encoding="UTF-8"?>

106

<bookstore>

<book>

<title lang="en">Harry Potter</title>

<price>29.99</price>

</book>

<book>

<title lang="en">Learning XML</title>

<price>39.95</price>

</book>

</bookstore>

3. SELECTING NODES

XPath uses path expressions to select nodes in an XML document. The node is

selected by following a path or steps. The most useful path expressions are listed

below:

Expression Description

Nodename Selects all nodes with the name "nodename"

/ Selects from the root node

// Selects nodes in the document from the current node that match

the selection no matter where they are

. Selects the current node

.. Selects the parent of the current node

@ Selects attributes

In the table below we have listed some path expressions and the result of the expressions:

Path Expression Result

Bookstore Selects all nodes with the name "bookstore"

/bookstore Selects the root element bookstore

Note: If the path starts with a slash (/) it always represents an

absolute path to an element!

bookstore/book Selects all book elements that are children of bookstore

//book Selects all book elements no matter where they are in the

document

bookstore//book Selects all book elements that are descendant of the bookstore

element, no matter where they are under the bookstore element

//@lang Selects all attributes that are named lang

Predicates

 Predicates are used to find a specific node or a node that contains a specific value.

 Predicates are always embedded in square brackets.

 In the table below we have listed some path expressions with predicates and the

107

result of the expressions:

Path Expression Result

/bookstore/book[1] Selects the first book element that is the child of the

bookstore element.

Note: In IE 5,6,7,8,9 first node is[0], but according

to W3C, it is [1]. To solve this problem in IE, set the

SelectionLanguage to XPath:

In JavaScript:

xml.setProperty("SelectionLanguage","XPath");

/bookstore/book[last()] Selects the last book element that is the child of the

bookstore element

/bookstore/book[last()-1] Selects the last but one book element that is the

child of the bookstore element

/bookstore/book[position()<3] Selects the first two book elements that are children

of the bookstore element

//title[@lang] Selects all the title elements that have an attribute

named lang

//title[@lang='en'] Selects all the title elements that have a "lang"

attribute with a value of "en"

/bookstore/book[price>35.00] Selects all the book elements of the bookstore

element that have a price element with a value

greater than 35.00

/bookstore/book[price>35.00]/title Selects all the title elements of the book elements

of the bookstore element that have a price element

with a value greater than 35.00

Selecting Unknown Nodes

XPath wildcards can be used to select unknown XML nodes.

Wildcard Description

* Matches any element node

@* Matches any attribute node

node() Matches any node of any kind

In the table below we have listed some path expressions and the result of the expressions:

Path Expression Result

/bookstore/* Selects all the child element nodes of the bookstore element

//* Selects all elements in the document

//title[@*] Selects all title elements which have at least one attribute of any

kind

108

Selecting Several Paths

By using the | operator in an XPath expression you can select several paths.

In the table below we have listed some path expressions and the result of the expressions:

Path Expression Result

//book/title | //book/price Selects all the title AND price elements of all book

elements

//title | //price Selects all the title AND price elements in the document

/bookstore/book/title | //price Selects all the title elements of the book element of the

bookstore element AND all the price elements in the

document

XPath Axes

An axis defines a node-set relative to the current node.

AxisName Result

Ancestor Selects all ancestors (parent, grandparent, etc.) of the current node

ancestor-or-self Selects all ancestors (parent, grandparent, etc.) of the current node

and the current node itself

Attribute Selects all attributes of the current node

Child Selects all children of the current node

Descendant Selects all descendants (children, grandchildren, etc.) of the current

node

descendant-or-self Selects all descendants (children, grandchildren, etc.) of the current

node and the current node itself

Following Selects everything in the document after the closing tag of the

current node

following-sibling Selects all siblings after the current node

Namespace Selects all namespace nodes of the current node

Parent Selects the parent of the current node

 Preceding Selects all nodes that appear before the current node in the

document, except ancestors, attribute nodes and namespace nodes

preceding-sibling Selects all siblings before the current node

Self Selects the current node

XPath Location Path

To select a node (or set of nodes) in XPath, you use a location path. A location

path is used to specify the exact path to the node you need to select

Consider the following xml document:

<albums>

<rock>

<title>Machine Head</title>

<artist>Deep Purple</artist>

109

</rock>

<blues>

<title>Greens From The Garden</title>

<artist>Cory Harris</artist>

</blues>

<country>

<title>The Ranch</title>

<artist>The Ranch</artist>

</country>

</albums>

- Now, here's a simple XPath expression to select the "title" node:

albums/rock/title

- The above expression would result in the first "title" node being selected:

<title>Machine Head</title>

- If we wanted to select the artist instead, we would use this location path:

albums/rock/artist

- The above expression would select the first "artist" node instead:

<artist>Deep Purple</artist>

Location Path Expression

 A location path can be absolute or relative.

Absolute path

 An absolute location path starts with a slash (/) and a relative location path

does not. In both cases the location path consists of one or more steps, each

separated by a slash:

 An absolute location path:

/step/step/...

 Where each step is evaluated against the nodes in the current node-set. A step

consists of:

o an axis (defines the tree-relationship between the selected nodes and the

current node)

o a node-test (identifies a node within an axis)

o zero or more predicates (to further refine the selected node-set)

 The syntax for a location step is:

axisname::nodetest[predicate]

 Consider the XML document given above. In that, if you wanted to select the "title"

node of all albums, we could use the following (absolute) location paths:

albums/rock/title

albums/blues/title

albums/country/title

 Here are the nodes that are selected using the above location path.

110

<title>Machine Head</title>

<title>Greens From The Garden</title>

<title>The Ranch</title>

 Selecting root node:

o If we wanted to select the root node, we could use either the node's

name or a forward slash. Both of these options are absolute location

paths and select the root node.

Option 1 - use the root node's name:

Albums

Option 2 - use a forward slash:

/

Relative path:

 If your location path begins with the name of a descendant, you're using a

relative location path. This node is referred to as the context node.

 A relative location path is one where the path starts from the node of your

choosing- it doesn't need to start from the root node.

 A relative location path:

step/step/...

 Consider the following XML document:

 If we wanted to select the "title" node of all albums, we could use the following

(relative) location path:

title

Examples

Example Result

child::book Selects all book nodes that are children of the current

node

attribute::lang Selects the lang attribute of the current node

child::* Selects all element children of the current node

 attribute::* Selects all attributes of the current node

child::text() Selects all text node children of the current node

child::node() Selects all children of the current node

descendant::book Selects all book descendants of the current node

ancestor::book Selects all book ancestors of the current node

ancestor-or-self::book Selects all book ancestors of the current node - and the

current as well if it is a book node

child::*/child::price Selects all price grandchildren of the current node

XPath Operators

An XPath expression returns either a node-set, a string, a Boolean, or a number.

XPath Operators

Below is a list of the operators that can be used in XPath expressions:

111

Operator Description Example

| Computes two node-sets //book | //cd

+ Addition 6 + 4

- Subtraction 6 – 4

* Multiplication 6 * 4

Div Division 8 div 4

= Equal price=9.80

!= Not equal price!=9.80

< Less than price<9.80

<= Less than or equal to price<=9.80

> Greater than price>9.80

>= Greater than or equal to price>=9.80

Or Or price=9.80 or price=9.70

And and price>9.00 and price<9.90

Mod Modulus (division

remainder)

5 mod 2

XPath functions

Functions on Boolean Values

Name Description

boolean(arg) Returns a boolean value for a number, string, or node-set

Example: boolean('true') Example: boolean(0)

Result: true Result: false

not(arg) The argument is first reduced to a boolean value by applying the

boolean() function. Returns true if the boolean value is false, and false

if the boolean value is true

Example: not(true())

Result: false

 true() Returns the boolean value true

Example: true()

Result: true

false() Returns the boolean value false

Example: false()

Result: false

Functions on Nodes

Name Description

name()

name(nodeset)

Returns the name of the current node or the first

node in the specified node set

112

local-name()

local-name(nodeset)

Returns the name of the current node or the first

node in the specified node set - without the

namespace prefix

namespace-uri()

namespace-uri(nodeset)

Returns the namespace URI of the current node

or the first node in the specified node set

lang(lang) Returns true if the language of the current node

matches the language of the specified language

Example: Lang("en") is true for

<p xml:lang="en">...</p>

Example: Lang("de") is false for

<p xml:lang="en">...</p>

root()

root(node)

Returns the root of the tree to which the current

node or the specified belongs. This will usually

be a document node

Functions on Numeric Values

Name Description

number(arg) Returns the numeric value of the argument. The

argument could be a boolean, string, or node-set

Example: number('100')

Result: 100

abs(num) Returns the absolute value of the argument

Example: abs(3.14)

Result: 3.14

Example: abs(-3.14)

Result: 3.14

ceiling(num) Returns the smallest integer that is greater than

the number argument

Example: ceiling(3.14)

Result: 4

floor(num) Returns the largest integer that is not greater

than the number argument

Example: floor(3.14)

Result: 3

 round(num) Rounds the number argument to the nearest

integer

Example: round(3.14)

Result: 3

round-half-to-even() Example: round-half-to-even(0.5)

Result: 0

Example: round-half-to-even(1.5)

Result: 2

Example: round-half-to-even(2.5)

Result: 2

113

Functions on Strings

Name Description

string(arg) Returns the string value of the argument. The

argument could be a number, boolean, or node-set

Example: string(314)

Result: "314"

compare(comp1,comp2)

compare(comp1,comp2,collation)

Returns -1 if comp1 is less than comp2, 0 if comp1 is

equal to comp2, or 1 if comp1 is greater than comp2

(according to the rules of the collation that is used)

Example: compare('ghi', 'ghi')

Result: 0

concat(string,string,...) Returns the concatenation of the strings

Example: concat('XPath ','is ','FUN!')

Result: 'XPath is FUN!'

string-join((string,string,...),sep) Returns a string created by concatenating the string

arguments and using the sep argument as the

separator

Example: string-join(('We', 'are', 'having', 'fun!'), ' ')

Result: ' We are having fun! '

Example: string-join(('We', 'are', 'having', 'fun!'))

Result: 'Wearehavingfun!'

Example:string-join((), 'sep')

Result: ''

substring(string,start,len)

substring(string,start)

Returns the substring from the start position to the

specified length. Index of the first character is 1. If

length is omitted it returns the substring from the start

position to the end

Example: substring('Beatles',1,4)

Result: 'Beat'

Example: substring('Beatles',2)

Result: 'eatles'

 string-

length(string)

string-length()

Returns the length of the specified string. If there is

no string argument it returns the length of the string

value of the current node

Example: string-length('Beatles')

Result: 7

normalize-space(string)

normalize-space()

Removes leading and trailing spaces from the

specified string, and replaces all internal sequences of

white space with one and returns the result. If there is

no string argument it does the same on the current node

Example: normalize-space(' The XML ')

Result: 'The XML'

114

upper-case(string) Converts the string argument to upper-case

Example: upper-case('The XML')

Result: 'THE XML'

lower-case(string) Converts the string argument to lower-case

Example: lower-case('The XML')

Result: 'the xml'

translate(string1,string2,string3) Converts string1 by replacing the characters in string2

with the characters in string3

Example: translate('12:30','30','45')

Result: '12:45'

Example: translate('12:30','03','54')

Result: '12:45'

Example: translate('12:30','0123','abcd')

Result: 'bc:da'

escape-uri(stringURI,esc-res) Example: escape-uri("http://example.com/test#car",

true())

Result: "http%3A%2F%2Fexample.com%2Ftest#car"

Example: escape-uri("http://example.com/test#car",

false())

Result: "http://example.com/test#car"

contains(string1,string2) Returns true if string1 contains string2, otherwise it

returns false

Example: contains('XML','XM')

Result: true

starts-with(string1,string2) Returns true if string1 starts with string2, otherwise it

returns false

Example: starts-with('XML','X')

Result: true

ends-with(string1,string2) Returns true if string1 ends with string2, otherwise it

returns false

Example: ends-with('XML','X')

Result: false

substring-before(string1,string2) Returns the start of string1 before string2 occurs in it

Example: substring-before('12/10','/')

Result: '12'

substring-after(string1,string2) Returns the remainder of string1 after string2 occurs

in it

Example: substring-after('12/10','/')

Result: '10'

115

matches(string,pattern) Returns true if the string argument matches the

pattern, otherwise, it returns false

Example: matches("Merano", "ran")

Result: true

replace(string,pattern,replace) Returns a string that is created by replacing the given

pattern with the replace argument

Example: replace("Bella Italia", "l", "*")

Result: 'Be**a Ita*ia'

Example: replace("Bella Italia", "l", "")

Result: 'Bea Itaia'

tokenize(string,pattern) Example: tokenize("XPath is fun", "\s+")

Result: ("XPath", "is", "fun")

2. XLINK

 XLink is used to create hyperlinks within XML documents

 Any element in an XML document can behave as a link

 With XLink, the links can be defined outside the linked files

 XLink is a W3C Recommendation

XLink Attribute Reference

Attribute Value Description

xlink:actuate onLoad

onRequest

other none

Defines when the linked resource is read or retrieved and shown.

The possible values are:

• onLoad - the resource should be loaded and shown when

the document loads

• onRequest - the resource is not read or shown before the

link is clicked

xlink:title Some text It is used in extended link. This attribute provides a human

readable label

xlink:role qName It is used in extended link. This attribute provides a machine

readable label

xlink:href URL Specifies the URL to retrieve external resource

xlink:show embed

new

replace

other

none

Specifies where to open the link. Default is "replace"

replace – replace the current content with target resource

new – open in the new window

embed- embed target resource along with current content. It is

like tag in html

116

xlink:type simple

extended

locator

arc

resource

title

none

Specifies the type of link

Simple - used to create external link similar to <a href> in Html

Extended – used to create link with m multiple resource. All

other types are as child-element of extended link

xlink:from

& xlink:to

qName The xlink:from and xlink:to attributes are used only with

extended link. The value of xlink:from and xlink:to attribute are

qName

They are used to define direction of the link

- role and title attributes are called semantic attribute

- actuate and show attirbute are called behavior attributes

Types of links:

- xlink define two main types of link (i)simple link (ii) extended link Simple link

- It provides the same functionality as hyperlink(<a> - anchor element)

 provided to html

- They are the one way link, involving only two resources: the source and destination

- example of simple link given below:

<?xml version="1.0"?>

<person xmlns:xlink="http://www.w3.org/1999/xlink">

<name xlink:type="simple" xlink:href="name.xml" xlink:actuate="onLoad"

 xlink:show="embed"/>

<picture xlink:type="simple" xlink:href="picture.jpg"

xlink:actuate="onLoad" xlink:show="embed"

xlink:title="Click to see picture!"> Click here to see a picture! </picture>

<homepage xlink:type="simple"

xlink:href="http://www.xyz.com/homepages/persona1.htm"

xlink:actuate="onRequest"

xlink:show="replace">Click here for the homepage</homepage>

</person>

Extended link

- Extended link is the one that associate any number of resources.

117

- They allow you to specify complex traversal rule between various resources

- An external link can be either inline or out of line

(i) inline- if link’s one of the resources is in the same xml document then it is

referred to as inline

(ii) out of line – if all of the link recources are remote

- an extended resource con has one or more child elements, which define the

local and remote resources participating in the extended link, traversal rules

for those resources

- extended type element can have the semantic attributes: role and title, which

define machine and human readable label for the link

locator type elements

- They are child element of extended type elements

- It is used to indicate remote resource taking part in an extended link

- locater type element must include href attributres. Optionally it can include

title and role attribute alos

arc type elements

- arc type element define the direction in which the link must traverse using from and to

attributes

- it also define the behavior that the link follow when it retrieve the resources using

show and actuate attributes

- except href, all other xlink’s attributes can be used in arc-type element

resource type elements

- They are used to create local resource

- An extended link can be inline, if atleast one of the resource specified is local

- These types of element can only have role and title attribute, both are optional

title type elements

- the benfit of using title type element, instead of title attribute is that the

elements such as ,<U> can included within the text

example: The example, define extended link, with about three resource-type

elements and three arc-type-elements and two locator-type elements

<PartNumber xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:op="http://sernaferna.com/OrderProcessingSystem"

xlink:type="extended">

<item xlink:type="resource" xlink:role="op:item" xlink:title="Item">

<part-number>E16-25A</part-number>

<description>Production-Class Widget</description>

</item>

118

<salesperson xlink:type="locator"

xlink:href="http://sernaferna.com/order256.xml#xpointer(/order/name)"

xlink:role="op:salesperson" xlink:title="Salesperson"/>

<order xlink:type="locator" xlink:href="http://sernaferna.com/order256.xml"

xlink:role="op:order" xlink:title="Order"/>

<GetOrder xlink:type="arc" xlink:from="op:salesperson" xlink:to="op:order"

xlink:show="replace" xlink:actuate="onRequest"

xlink:role="op:GetOrder" xlink:title="Last order processed."/>

<GetSalesperson xlink:type="arc" xlink:from="op:order"

xlink:to="op:salesperson" xlink:show="replace"

xlink:actuate="onRequest" xlink:role="op:GetSalesperson"

xlink:title="Salesperson's name"/>

<GetItemOrder xlink:type="arc" xlink:from="op:item" xlink:to="op:order"

xlink:show="new" xlink:actuate="onRequest" xlink:role="op:GetItemOrder"

xlink:title="Last order placed for this item"/>

</PartNumber>

4. XPOINTER

 Pointer allows links to point to specific parts of an XML document

 XPointer uses XPath expressions to navigate in the XML document

 XPointer is a W3C Recommendation

XPointer Example

- In this example, we will use XPointer in conjunction with XLink to point to a

specific part of another document.

- Instead of linking to the entire document (as with XLink), XPointer allows

you to link to specific parts of the document. To link to a specific part of a

page, add a number sign (#) and an XPointer expression after the URL in the

xlink:href attribute, like this:

xlink:href="http://dog.com/dogbreeds.xml#xpointer(id('Rottweiler'))". The

expression refers to the element in the target document, with the id value of

"Rottweiler"

- The following XML document contains links to more information of the dog

breed for each of my dogs:

<?xml version="1.0" encoding="UTF-8"?>

<mydogs xmlns:xlink="http://www.w3.org/1999/xlink">

<mydog>

<description>

Anton is my favorite dog. He has won a lot of.....

</description>

<fact xlink:type="simple" xlink:href="http://dog.com/dogbreeds.xml#Rottweiler">

119

Fact about Rottweiler

</fact>

</mydog>

<mydog>

<description>

Pluto is the sweetest dog on earth......

</description>

<fact xlink:type="simple"

xlink:href="http://dog.com/dogbreeds.xml#FCRetriever">

Fact about flat-coated Retriever

</fact>

</mydog>

</mydogs>

XPointer short hand syntax:

In addition to the full Xpointer syntax, there are also a couple of shorthand

syntaxes available. They are

• The Bare name syntax

• The child sequence syntax

Consider the following xml document, with an ID attribute(names.xml):

<?xml version= "1.0 " ?>

<!DOCTYPE order [<!ELEMENT order (name, item, quantity,date)>

<!ELEMENT name (first, middle, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT middle (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT item (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ATTLIST first id ID #REQUIRED>]>

<order>

<name>

<first id="section-1">John</first>

<middle>Kennady</middle>

<last>Doe</last>

</name>

<item>production-class widget</item>

<quantity>16</quanity>

<date>12.12.15</date>

</order>

Full XPointer syntax:

Assume this file is stored in URI:

http://www.xyz.com

120

- The common usage of XPointer will be retrieving an element from an XML

document based on its ID. The full syntax for the href attribute would be like

this:

http://www.xyz.com/names.xml#xpointer(id("section-1"))

- This will retrieve an element which have an attribute of ID type with a value of

attribute as “section-1”; in this case, <first> element will be retrieved

The Bare names syntax:

- The bare name syntax allows us to retrieve an element by its ID with value as

“section=1” like this:

http://www.xyz.com/names.xml#section-1

- This will produce the same result as full xpointer example. That is the <first>

element will be retrieved

- XPointer provides this shorthand syntax is to provide mechanism which is

similar to HTML’s method of retrieving a document

The child sequence syntax:

- In the third way, we can specify XPointer expression at the end of the URI is to

use a child sequence:

http://www.xyz.com/names.xml#/1/1/2

- which says to select the second child of the first child of the document root. In

this case, it is the <middle> element

- The number after / are child element numbers of previously selected elements

- This expression means that “the second child element of first child element

of first child element”. When used right at the beginning of the child sequence,

/1 means the root element. This XPointer expression is equivalent to:

http://www.xyz.com/names.xml#xpointer(/*[1]/*[1]/*[2])

- you can also append a child sequece to the Bare name expression as shown in

the following:

http://www.xyz.com/names.xml#section-1/3

this will take the third child element of the element with an ID of section-

1

note: both child sequence and bare names syntaxes can be used to retrive element

node types from xml document; for other node types, you need to use the full

XPointer syntax

Using muliple xpointer expressions

- XPointer reads the expression from left to right. If one expression fails, the next

121

expression is evaluated

- The result of first successfully executed expression is taken and the rest is ignored

- Consider the following example:

XPointer(id(“section-1”))xpointer(//*[@id=”section-1”])

- If there is a DTD associated with this xml document, which define ID attribute

then the first expression XPointer(id(“section-1”)) is evaluated and result will

be returned

- Otherwise, evaluation of first expresion fails, so that second expression will be

evaluated xpointer(//*[@id=”section-1”]), its result will be returned

Location Point and range

- To address non-node locations, XPointer defines two new location types, point

and range, that can appear in location-sets and can be operated on by XPath

node tests and predicates.

- Points and ranges can be used as XPointer context locations. This allows the

XPointer [] operator to be used to select from sets of ranges. Also, a point as a

context location, when followed by a range-to function, selects a range

Definition of Point Location

- A point is simply a spot in the xml document. It is defined using the usual

XPointer expression

- There are two pieces of information needed to define a point: a container node

and an index

- Points are located between two elements or between two characters in a

CDATA section

- Whether the point refers to characters or elements depends on the nature of the

container node

- An index of zero indicates the point before any child nodes and a non-zero index n

indicates the point immediately after the nth child node.

- When container node is an element then the index becomes an index of the child

elements and point is called node point

- In the following example, the container node is <name> element:

<name>

<first>John</first>

Container node

122

<middle>Kennady</middle>

<last>Doe</last>

</name>

node point

- The XPointer expression #xpointer(/name[2]) indicates the point right after

second child element of <name>, which is <middle> element

- If the containder is any other node-type, the index refers to the characters of the

string value of that node, and the point is called character-point. In the following

example, the container node is PCDATA child of <middle>:

<name>

character-point

<first>John </first>

<middle>Kennady</middle>

<last>Doe</last>

</name>

Container node

- The XPointer expression #xpointer(/name/middle/text()[2]) indicates the

point right after the ‘e’ nd right before ‘n’ of Kennady

Ranges:

 A range is defined by two points- a start point and an end point – and consist

of all of the XML structure and content between those two points

 The start point and end point must both be in the same document. If the start

and end point are equal then the range is called collapsed range

 If the container node of either point is other than an element node, text node,

document, root node, then the container node of other point must be the same

 The following range is valid, because both start point and end point are in the same

PI:

<root>

start point end point

<?MyApp processing instruction 1?>

<child>some data</child>

<?MyApp processing instruction 2?>

</root>

Container node

123

 The following range is invalid, because both start point and end point are in

the same PI:

<root>

Container node

<child>some data</child>

<?MyApp processing instruction 2?>

</root>

end point

How do we select ranges using xpointer

 XPointer adds the keyword to which we can insert in our XPointer

expression to specify a range. It is used as follows:

http://www.xyz.com/order.xml#xpointer(/order/name to /order/item)

 This select a range where start point is before <name> element, and end point

is just after the <item> element:

<?xml version=”1.0” ?>

<order>

<name>

<first>John</first

>

<middle/>

<last>Doe</last>

</name>

start point

<item>production-class

widget</item>

<quantity>16</quanity>

<date>12-1-2016</date>

<customer>ram kumar</customer>

</order>

Range with multiple location

end point

<?MyApp processing instruction 1?>

124

 if the expression on eiterh side of the “to” keyword return multiple

location in their location set the thing get complicated. Let’s

explain with an example using following XML document:

<people>

<person name="John">

<phone>(555)555-1212</phone>

<phone>(555)555-1213</phone>

</person>

<person name="David">

<phone>(555)555-1214</phone>

</person>

<person name="Andrea">

<phone>(555)555-1215</phone>

<phone>(555)555-1216</phone>

<phone>(555)555-1217</phone>

</person>

<person name="Ify">

<phone>(555)555-1218</phone>

<phone>(555)555-1219</phone>

</person>

<!--more people could follow-->

</people>

In this we have list of people, and each person have one or more

phone numbers. Consider the following XPointer:

#xpointer(//person to phone[1])

The first expression on the left side of to keyword will return

number of <person> elements, the second expression will return the

first <phone> element.

XPointer tackles this as follows:

(1) it evaluate the expression on the left side of to keyword, and saves

the location set obtained from expression. In

 this case, the location set will have all of

<person>elements :

Location set

(2) using the first location in that set as context location, XPath then

evaluate the expression on the right side of to keyword. In this case

it will select first <phone> child of <person>element in the

location set on the left:

<person name="John">

<person name="David">

<person name="Andrea">

<person name="Ify">

125

<person name="John">

<person name="David">

<person name="Andrea">

<person name="Ify">

<phone>(555)555-1212</phone>

(3) for each location in this second location set , XPointer adds the

range to the result, with start point beginning of location to the first

location set , and end point at the end of the location in the second

location set. In this case, only one range will be created, since the

second returned only one location

(4) step (2) and (3) repeated for each location in the first location set,

with all additional range being added to the result. So that the result

of Xpointer will return the following pieces of xml selected in our

document

<person name="John">

<phone>(555)555-1212</phone>

<person name="David">

<phone>(555)555-1214</phone>

<person name="Andrea">

<phone>(555)555-1215</phone>

<person name="Ify">

<phone>(555)555-1218</phone>

range

<person name="John">

<person name="David">

<person name="Andrea">

<person name="Ify">

<phone>(555)555-1212</phone>

126

CHAPTER 8

XSL

1. INTRODUCTION

XSL stands for EXtensible Stylesheet Language, and is a style sheet language for XML

documents. XSLT stands for XSL Transformations. The World Wide Web Consortium

(W3C) developed XSL.

XSL Technologies

XSL has two independent languages:
• XSLT - a language for transforming XML documents

• XSL-FO - a language for formatting XML documents (discontinued in 2013)

XLST extensively uses the following to retrieve data from XML documents:

• XPath - a language for navigating in XML documents

• XQuery - a language for querying XML documents

What is XSLT?

XSLT is a language for transforming XML documents into XHTML documents or to

other XML documents.

• XSLT stands for XSL Transformations

• XSLT is the most important part of XSL

• XSLT uses XPath to navigate in XML documents

• XSLT is a W3C Recommendation

XSLT = XSL Transformations

- XSLT is used to transform an XML document into another XML document, or another

type of document that is recognized by a browser, like HTML and XHTML. Normally

XSLT does this by transforming each XML element into an (X)HTML element.

- With XSLT you can add/remove elements and attributes to or from the output file. You

can also rearrange and sort elements, perform tests and make decisions about which

elements to hide and display, and a lot more.

XSLT Uses XPath

- XSLT uses XPath to find information in an XML document. XPath is used to navigate

through elements and attributes in XML documents.

How Does it Work?

- In the transformation process, XSLT uses XPath to define parts of the source document

that should match one or more predefined templates. When a match is

found, XSLT will transform the matching part of the source document into the result

127

document.

XSLT is a W3C Recommendation

- XSLT became a W3C Recommendation 16. November 1999.

2. PROCESS OF XSLT

XSLT provides the mechanism for converting an XML document to another format. This

is accomplished by applying an XSLT style sheet to the XML document. The style sheet

contains conversion rules for accessing and transforming the input XML document to a

different output format. An XSLT processor is responsible for applying the rules defined

in the style sheet to the input XML document. The process is illustrated in the following

Figure:

Transforming / Converting XML Document into HTML Document

This process involves four steps:

Step1: Creating the XML document that need to be transformed into HTML document

Step2: Creating the XSL Style Sheet that formatting rule about how to convert xml data

into HTML document
Step3: link the XSL style sheet with XML document

Step4: viewing the transformed result XML document in browser

Step1: Creating the XML document – stock.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="stock.xsl"?>

<portfolio>

<stock exchange="NSC">

<name> HDFC bank </name>

<symbol>HDFC</symbol>

<price>28.875</price>

</stock>

<stock exchange=" NSC ">

XSLT

Processor
XSL Style

Sheet

Other

documents

(PDF, WML)

XML

Document

XML

documnet

HTML

Document

128

<name> ICICI BANK </name>

<symbol> ICICI </symbol>

<price>92.250</price>

</stock>

<stock exchange=" NSC ">

<name> Coal India Ltd </name>

<symbol>COALINDIA</symbol>

<price>20.313</price>

</stock>

</portfolio>

2. Creating the XSL Style Sheet – stock.xsl

• In this section, we’ll convert an XML document to an HTML document. The XML

document contains a list of companies in stock market:

<?xml version='1.0'?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="stock">

<DIV STYLE="font-weight:bold">

Symbol: <xsl:value-of select="symbol" />,

Price: <xsl:value-of select="price" />

</DIV>

</xsl:template>

</xsl:stylesheet>

- The XML document, stock.xml contains element <portfolio>, which contain one or

more child element as <stock>. <stock> contain the following child

elements:<name>, <symbol>, <price>. Stock.xsl file contain transformation rule, that

only retrieve values of <symbol> and <price> then display the result as HTML

document

- In this example, we will apply the style sheet in a client-side Web browser. The XML

document makes a reference to a style sheet using the following code:

Step3: link the XSL style sheet with XML document

- Linking of stock.xsl with stock.xml is done by inserting the following code as second

line in xml documment

<?xml-stylesheet type=”text/xsl” href=”stock.xsl”?>

Step4: viewing the transformed result XML document in browser

- To see the transformed output, open the stock.xml file with XSLT complaint browser

- The output is shown in the following figure:

129

3. THE XSLT PROCESSOR

XSLT processors are widely available. When you select an XSLT processor, you must

ensure that it is fully compliant with the XSLT 1.0 specification. Table contains a list of

the most popular XSLT 1.0–compliant processors

Company Product Web site address

Apache Xalan-J 1.2.2 xml.apache.org

Microsoft MS XML Parser 3.0 msdn.microsoft.com

Sun Microsystems JAXP 1.1 java.sun.com/xml

James Clark XT www.jclark.com/xml/

Techniques available for performing the XSLT processing

There are two techniques are available for performing the XSLT processing. They are:

(i) client-side XSLT processing

(ii) server-side XSLTprocessing

client-side XSLT processing

- Client-side XSLT processing commonly occurs in a Web browser. The Web browser

includes an XSLT processor and retrieves the XML document and XSL style sheet, as

shown in Figure

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl"

href="stock.xsl"?>

<portfolio>

<stock exchange="NSC">

<name> HDFC bank </name>

130

- The client-side technique offloads the XSLT processing to the client machine. This
minimizes the workload on the Web server.

- Netscape Communicator 1.0 specification and Microsoft Internet Explorer 6

support the XSLT

- The client-side technique-controlled environment is applicable when you’re deploying an

application in a For example, in a corporate environment, the system

administrators can install the latest version of the Web browser that conforms to the

XSLT 1.0 specification

Disadvantage:

- the disadvantage is that the Web browser must provide XSLT support

Implementing Client-Side XSLT Processing

- Implement client-side XSLT processing, you will need a browser that supports XSLT

1.0, such as Netscape Communicator 6 or Microsoft Internet Explorer 6

- For client-side p r o c e s s i n g , the XML document requires a

special processing instruction to reference the XSL style

sheet, as in the following example

<?xml-stylesheet type="text/xsl" href="book_view.xsl"?>

- The processing instruction is <?xml-stylesheet>, and it has two attributes: type and

href

- Store the following two files book.xml and book_view.xsl in the virtual directory of

Java Web Server (OR) IIS

book.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="book_view.xsl"?>

<book>

<author>Michael Daconta et al</author>

<title>XML Development with Java 2</title>

<category>Java</category>

<price currency="USD”>44.99</price>

<summary>

XML Development with Java 2 provides the information

and techniques a Java developer will need to integrate XML

into Java-based applications.

</summary>

</book>

131

book_view.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="/book">

<html><body>

Title: <xsl:value-of select="title" />

By: <xsl:value-of select="author" />

Cost: <xsl:value-of select="price" />

Category: <xsl:value-of select="category" />

Description

<i><xsl:value-of select="summary" /></i>

</body></html>

</xsl:template>

</xsl:stylesheet>

- Now open the browser, on the client machine and type the following address of web

server:

http://localhost/xampp/book.xml

- The output is shown below:

SERVER-SIDE XSLT PROCESSING

Server-side XSLT processing occurs on the Web server or application server. A serverside

process such as an Active Server Page (ASP), JavaServer Page (JSP), or Java servlet will

retrieve the XML document and XSL style sheet and pass them to an XSLT

processor. The output of the XSLT processor is sent to the client Web browser for

132

presentation. The output is generally a markup language, such as HTML, that is
understood by the client browser. The application interaction is illustrated in Figure

When to go for server-side processing

- If you are deploying the application on an extranet or the Internet, you will probably

have little control over the type/version of browser installed on the client machines. If

this is the case, you should implement the server-side technique

Advantage:

- An advantage of the server-side technique is browser independence, since the output

document to the browser is simply an HTML file

- This technique supports the older browser versions and makes the application more

robust and versatile

-

IMPLEMENTING SERVER-SIDE XSLT PROCESSING

To implement the server-side processing technique, many number of server-side

technologies are available, including the following:

o Common Gateway Interface (CGI),

o ColdFusion,

o Hypertext Processor (PHP), and so on.
- We focuses on server-side processing with

o Microsoft’s Active Server Pages (ASP) and

o Sun Microsystem’s JavaServer Pages (JSP)

ASP: Server-Side XSLT Processing

- In order to develop using ASP, you will need the IIS Web server and the latest version

of the Microsoft XML parser. The required components are listed below:

133

o Microsoft IIS Web Server 5.0. This version of IIS is included with Microsoft
Windows 2000 Professional. You can also use IIS 4.0 or Personal Web Server
(PWS); however, you will have to install the Windows NT Option Pack 4

o Microsoft XML Parser 3.0. If you have IE 6 installed on your server machine, then
MS XML Parser 3.0 is included

Steps:

Create a virtural directory called “ServerSideXSLT”. In that copy both “book.xml” and

“book_view.xsl”. Then create the following “book_test.asp” file

book_test.asp

<%@ Language=VBScript %>

<% set xml = Server.CreateObject(“Microsoft.XMLDOM”)

xml.load(Server.MapPath(“book.xml”))

set xsl = Server.CreateObject(“Microsoft.XMLDOM”)

xsl.load(Server.MapPath(“book_view.xsl”))

Response.Write(xml.transformNode(xsl)) %>

- Now open the browser and type the following in the address bar:

http://localhost/ServerSideXSLT/book.xml

- The output of the book_test.asp is shown below

JSP: Server-Side XSLT Processing

- Sun Microsystems provides a server-side technology that is very similar to ASP. Of

course, the server-side scripting is accomplished in Java.

- In order to perform the serverside processing with JSP, you will need to install the

Java Software Development Kit (SDK) along with a compliant JSP server container
- Here’s a list of required components:

- Sun Microsystems’ Software Development Kit (SDK) 1.3 (or higher).

- Apache Tomcat Server 4. Apache Tomcat 4 is the official reference implementation for

JSP 1.2 and Java Servlets 2.3.

- Once Tomcat 4 is installed, you need to add a new Web application that points to the

134

source code directory.

- This is accomplished by editing the file <tomcat_install_dir>\conf\server.xml. Move to

the section where the <Context> elements are listed and then add the following entry:

<Context path=”/bookch9” docBase=”<install_dir>/public_html”

debug=”0” reloadable=”true” />

- Restart the Tomcat server to pick up the new configuration. By default, the Tomcat

server is listening on port 8080. You can access files for the bookch9 Web application

using the URL http://localhost:8080/book_test.jsp

- This example makes use of a JSP custom tag for the XSLT processing. A JSP custom

tag is a special tag that is created by a developer. When the JSP server encounters the

custom tag, it executes the handler code associated with the tag. JSP custom tags are

conceptually similar to ASP server objects

- The Apache <jakarta:apply> tag provides the XSLT processing. The JSP code

example “book_test.jsp” shown below utilizes the <jakarta:apply> tag

<%@ taglib uri=”http://jakarta.apache.org/taglibs/xsl-1.0” prefix=”jakarta” %>

<jakarta:apply xml=”book.xml” xsl=”book_view.xsl” />

4. COMPONENTS OF XSLT DOCUMENT

- An XSLT document is a valid XML document. An XSLT document consists of a

number of elements/tags/attributes. These can be XSL elements or elements from

another language (such as HTML).
- XLST Document can contain the following components:

o XML prolog / XML Declaration

o < xsl:stylesheet> or < xsl:transform> element

o <xsl:template> element

o <value-of> Element

o <xsl:for-each> element

o <xsl:sort> element

o <xsl:if> element

XML prolog

- XSL documents are also XML documents and so we should include the XML version

in the document's prolog. We should also set the standalone attribute to "no" as we now

rely on an external resource (i.e. the external XSL file).

<?xml version="1.0" standalone="no"?>

< xsl:stylesheet> Element

- It is root element of every XSLT file. The root element needs to include the XSL

version as well as the XSL namespace

135

- The root element that declares the document to be an XSL style sheet is

<xsl:stylesheet> or <xsl:transform>

- An XSL style sheet has the following general structure:

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”URI” version=”1.0”>

<!--XSLT CONVERSION RULES-->
</xsl:stylesheet>

- The xmlns attribute is the namespace definition. The XSL Transformation engine reads

the xmlns attribute and determines whether it supports the given namespace. The xmlns

attribute specifies the XSL prefix. All XSL elements and types in the document use the

prefix
- The XSLT 1.0 specification defines the following URI for the XSL namespace:

http://www.w3.org/1999/XSL/Transform

The correct way to declare an XSL style sheet according to the W3C XSLT

Recommendation is:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

(OR)

<xsl:transform version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

- Note: <xsl:stylesheet> and <xsl:transform> are completely synonymous and either can

be used

- The XSL style sheet contains HTML text and XSL elements. The HTML text forms the

basis of the desired output page. The XSL elements are template rules for the XSLT

processor. A template is associated with a given element in the XML document

XSL Namespace Prefix

- All XSL elements in your XSLT document must include the XSL prefix.

Syntax: <xsl:element_name>

Example:
<xsl:template match="/">
....

</xsl:template>

XSLT <template> Element

- A template contains rules to apply when a specified node is matched. Following is the

syntax declaration of <xsl:template> element:

<xsl:template name= Qname match = Pattern priority = number mode = QName>

…

</xsl:template>

136

Attributes

Name Description

Name Name of the element on which template is to be applied.

Match Pattern which signifies the element(s) on which template is to be applied.

Priority Priority number of a template. Matching template with low priority is not
considered in front of high priority template.

Mode Allows element to be processed multiple times to produce a different result
each time

XSLT <value-of> Element

- The <xsl:value-of> element is used to extract the value of a selected node.

- The <xsl:value-of> element can be used to extract the value of an XML element and

add it to the output stream of the transformation

- Following is the syntax declaration of <xsl:value-of> element:

<xsl:value-of select = Expression disable-output-escaping = "yes" | "no" />

Attributes

Name Description

Select It is required attributes. The Expressions (XML) to be evaluated against the
current context. The results are converted to a string, as by a call to the
string() function. A node-set is converted to a string by inserting the string

value of the first node in the set

disable-

output-

escaping

Default is "no". If the value is "yes", a text node generated by instantiating

the <xsl:value-of> element will be output without any escaping. For

example, the following generates the single character "<".
<xsl:value-of disable-output-escaping="yes"

select="string('<')"/>

<xsl:for-each> element – for looping

- It is used for looping through a list of elements. This is very useful when you have a

collection of related items and you’d like to process them in a sequential fashion. The

<xsl:for-each> element is commonly used in the Web development world to convert

an XML document to an HTML table

- Here’s the syntax for <xsl:for-each>:

<xsl:for-each select=node-set-expression>

<!-- content -->

</xsl:for-each>

- The <xsl:for-each> element has a required attribute: select. The value of the select

attribute is an expression. The expression contains an XPath expression for selecting

the appropriate elements from the list

- See the following code snippet:

<xsl:for-each select=”booklist/book” >

<tr>

137

<td> <xsl:value-of select=”author” /> </td>

<td> <xsl:value-of select=”title” /> </td>

<td> <xsl:value-of select=”category” /> </td>

<td> <xsl:value-of select=”price” /> </td>

</tr>

</xsl:for-each>

Sorting

- In XSLT, the <xsl:sort> element is used for sorting the XML data. It is possible to sort

based on a single key or multiple keys.
- The syntax for the <xsl:sort> element is shown here:

<xsl:sort select = string-expression

order = { “ascending” | “descending” } data-

type = { “text” | “number” }

case-order = {“upper-first” | “lower-first” } lang

= { nmtoken } />

Sorting with Multiple Keys

- In certain situations, you might want to sort using multiple keys. For example, you could

sort the books by category and then by price. This is accomplished by inserting multiple

<xsl:sort> elements within an <xsl:for-each> element

- The <xsl:sort> element is used in conjunction with the <xsl:for-each> element. For

example, the following code snippet sorts the book based on category. Then records of

each category sorted based on price:

<xsl:for-each select=”booklist/book”>

<xsl:sort select=”category” order=”descending”/>

<xsl:sort select=”price” order=”ascending” data-type=”number” />

<tr>

<td> <xsl:value-of select=”author” /> </td>

<td> <xsl:value-of select=”title” /> </td>

<td> <xsl:value-of select=”category” /> </td>

<td> <xsl:value-of select=”price” /> </td>

</tr>

</xsl:for-each>

Conditionals(formatting)

- During an XSLT transformation, the style sheet can perform conditional tests on the

data. XSLT contains a very simple if-then conditional. The syntax for the <xsl:if>

element is shown here:

<xsl:if test=Boolean-expression>

<!-- content -->

</xsl:if>

138

The test attribute refers to a Boolean expression. If the Boolean expression evaluates to

true, the content within the <xsl:if> element is included in the output

The following code snippet performs a test for Fiction-Thriller books:

<xsl:for-each select=”booklist/book” >

<tr>

<xsl:if test=”category=’Fiction-Thriller’”>

<xsl:attribute name=”bgcolor”>pink</xsl:attribute>

</xsl:if>

<td> <xsl:value-of select=”author” /> </td>

<td> <xsl:value-of select=”title” /> </td>

<td> <xsl:value-of select=”category” /> </td>

<td> <xsl:value-of select=”price” /> </td>

</tr>

</xsl:for-each>

If a Fiction-Thriller book is found, the background color of the row is set to pink. In this

example, we’ve introduced a new XSLT element, <xsl:attribute>. The <xsl:attribute>

element creates a new attribute for the parent element. In this example, the parent is the

<tr> element

If the conditional is true, the <tr> element will have the attribute bgcolor and its value

set to red. The end result is <tr bgcolor=”pink”>.

Filters

Using XSLT, you can also filter the data based on a given expression. When data is selected

using the <xsl:for-each> element, the expression can contain a filter. For example, you can

filter the data to contain only Java books. The following code snippet performs the desired

operation:

<xsl:for-each select=”booklist/book[category=’Java’]” >

<tr>

<td> <xsl:value-of select=”author” /> </td>

<td> <xsl:value-of select=”title” /> </td>

<td> <xsl:value-of select=”category” /> </td>

<td> <xsl:value-of select=”price” /> </td>

</tr>

</xsl:for-each>

139

A complete example given below: Create the

following files sort.xml and sort.xsl: sort.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="sort.xsl"?>

<booklist>

<book>

<author>Mark Grand</author>

<title>Patterns in Java</title>

<category>Java</category>

<price currency="USD">44.99</price>

</book>

<book>

<author>Michael Daconta et al</author>

<title>XML Development with Java 2</title>

<category>Java</category>

<price currency="USD">37.99</price>

</book>

<book>

<author>E. Lynn Harris</author>

<title>Any Way The Wind Blows</title>

<category>Fiction-Romance</category>

<price currency="USD">19.95</price>

</book>

<book>

<author>E. Lynn Harris</author>

<title>Invisible Life</title>

<category>Fiction-Romance</category>

<price currency="USD">16.95</price>

</book>

<book>

<author>Tom Clancy</author>

<title>Executive Orders</title>

<category>Fiction-Thriller</category>

<price currency="USD">7.99</price>

</book>

<book>

<author>Tom Clancy</author>

<title>The Sum of All Fears</title>

<category>Fiction-Thriller</category>

140

<price currency="USD">7.99</price>

</book>

</booklist>

sort.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="/">

<html>

<body>

<h3>Sorting Example:By category, Price</h3>

<table border="1" cellpadding="5">

<tr>

<th>Author</th> <th>Title</th> <th>Category</th> <th>Price</th>

</tr>

<xsl:for-each select="booklist/book" >

<xsl:sort select="category" />

<xsl:sort select="price" order="ascending" data-type="number" />

<tr>

</tr><xsl:if test="category='Fiction-Thriller'">

<xsl:attribute name="bgcolor">pink</xsl:attribute>

</xsl:if>

<td> <xsl:value-of select="author" /> </td>

<td> <xsl:value-of select="title" /> </td>

<td> <xsl:value-of select="category" /> </td>

<td> <xsl:value-of select="price" /> </td>

</xsl:for-each>

</table> </body> </html> </xsl:template> </xsl:stylesheet>

Next Open sort.xml in the Internet

Explorer, you will get following output:

141

You can write the same program for sorting, sorting with multiple column, and conditional

formatting

5. XSL FOR BUSINESS-TO-BUSINESS (B2B) COMMUNICATION

XSLT is not only for document publishing, but it can also be used in for B2B

communication—the process of exchanging data between two different companies.

Developers can leverage XML to describe the data in a vendor-independent fashion. In the

ideal case, both companies will agree upon a standard vocabulary for describing the data

using a DTD or schema. The vocabulary is composed of the XML element names used in

the XML document. However, in certain cases one of the companies might like to use a

different vocabulary. This is where XSL enters the picture

The example in this section describes a B2B scenario between a training company, Hot

Shot Training, and a software development company, AcmeSoft. The computer training

company maintains a database for the students that have attended its courses. The training

company has developed an XML application that produces the list of students for a

given class. The management team at AcmeSoft would like to retrieve this list from the

training company’s XML application. However, once the data is retrieved, AcmeSoft

would like to store the data in a different XML format using its own XML element

names. The application interaction is illustrated in Figure

142

Figure:Converting XML data in B2B communication

Step involved in conversion of xml data in B2B communication given below:

Step1:The first step is to request the XML document from the training company

step 2: the XML document is retrieved.

step 3: the document is transformed using the supplied XSLT style sheet

step 4:Finally, the desired output document is produced

A sample output of the XML document used in training company is shown here:

trainingclass.xml

<?xml version=”1.0”?>

<?xml-stylesheet type="text/xsl" href="train2employee.xsl"?>

<trainingclass>

<title>J2EE Essentials</title>

<start_date>24 Sep 2001</start_date>

<end_date>28 Sep 2001</end_date>

<location>Philadelphia, PA</location>

<student>

<first_name>Riley</first_name>

<last_name>Scott</last_name>

<email>riley@acmesoft.web</email>

</student>

<student>

<first_name>Torrance</first_name>

<last_name>Lee</last_name>

<email>torrance.lee@acmesoft.web</email>

</student>

</trainingclass>

The AcmeSoft wants the above information in the XML file, but with different XML

structure. The structure of XML document required by AcmeSoft is shown here:

143

testoutput.xml

<?xml version=”1.0”?>

<employeelist>

<course_title>J2EE Essentials</course_title>

<course_date start=”24 Sep 2001” end=”28 Sep 2001” />

<location>Philadelphia, PA</location>

<employee>

<name>

<first>Riley</first>

<last>Scott</last>

</name>

<email>riley.scott@acmesoft.web</email>

</employee>

<employee>

<name>

<first>Torrance</first>

<last>Lee</last>

</name>

<email>torrance.lee@acmesoft.web</email>

</employee>

</employeelist>

Notice in both instances that the data is the same; it’s simply in a different format. The

format is different because of the element names used by AcmeSoft. The translation of

source XML document into target XML document can be done using the following

XSLT file:

train2employee.xsl

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/trainingclass”>

<employeelist>

<course_title><xsl:value-of select=”title” /></course_title>

<!-- create attributes for the start and end course dates -->

<course_date>

<xsl:attribute name=”start”><xsl:value-of select=”start_date”/></xsl:attribute>

<xsl:attribute name=”end”><xsl:value-of select=”end_date”/></xsl:attribute>

</course_date>

<location><xsl:value-of select=”location” /></location>

<!-- Perform a loop for each student in the training class -->

<xsl:for-each select=”student”>

<employee>

144

<name>

<first><xsl:value-of select=”first_name”/></first>

<last><xsl:value-of select=”last_name”/></last>

</name>

<email><xsl:value-of select=”email”/></email>

</employee>

</xsl:for-each></employeelist></xsl:template></xsl:stylesheet>

Using the XSLT Processor

- For most B2B applications, the source XML document is retrieved by another

applications rather than browser

- The another application could be standalone application or a component of a larger

B2B application

- In the case of a standalone application, the necessary code to perform the XSLT

processing needs to be developed.

- For example, a Visual Basic or Visual C++ application can use the XSLT processor

available with the Microsoft XML API
- Java application can use the XSLT processor available with the Apache Xalan API

- Here’s the code for a standalone Java application that uses the Apache Xalan API

import org.apache.xalan.xslt.*; public class XslTester{

public static void main(String[] args) {

try {

if (args.length != 3) {

System.out.println(“Usage: java XslTester <input XML> <input XSL> <output file>”);

return;

}

System.out.println(“Processing: “ + args[0] + “ and “ + args[1]);

// Step 1: Get a reference to the XSLT Processor

XSLTProcessor myEngine = XSLTProcessorFactory.getProcessor();

// Step 2: Get the XML input document

XSLTInputSource xmlSource = new XSLTInputSource(args[0]);

// Step 3: Get the XSL style sheet

XSLTInputSource xslStylesheet = new XSLTInputSource(args[1]);

// Step 4: Setup the output target

XSLTResultTarget xmlOutput = new XSLTResultTarget(args[2]);

// Step 5: Now process it!

myEngine.process(xmlSource, xslStylesheet, xmlOutput); System.out.println(“Created

=> “ + args[2]);

System.out.println(“Done!”);

}

catch (Exception exc) { exc.printStackTrace();

}

}

145

}
Compile the program by typing the following:

>javac XslTester.java

Execute the application by typing the following:

>java XslTester trainingclass.xml train2employee.xsl testoutput.xml

The content of testoutput.xml is given in the previous page.

6. XSL FORMATTING OBJECTS

The XSL technology is also composed of XSL Formatting Objects (XSL-FO). XSL-FO

was designed to assist with the printing and displaying of XML data. The main emphasis

is on the document layout and structure. This includes the dimensions of the output

document, including page headers, footers, and margins. XSL-FO also allows the

developer to define the formatting rules for the content, such as font, style, color, and

positioning. XSL-FO is a sophisticated version of Cascading Style Sheets (CSS). In fact,

XSL-FO borrows a lot of the terminology and elements from CSS

You can use two techniques for creating XSL-FO documents. They are:

(i) develop the XSL-FO file with the manually included data

(ii) dynamically create the XSL-FO file using an XSLT translation

XSL-FO documents are well-formed XML documents. An XSL-FO formatting engine

processes XSL-FO documents

XSL-FO Formatting Engines

Many of the XSL-FO formatting engines implement a subset of the XSL-FO

specification. The browser support for XSL-FO is nonexistent.

Table contains a list of XSL-FO formatting engines in that we’ll use the Apache XSL-

FOP to generate PDF documents from XML.
XSL-FO Engine Web Site

Apache XSL-FOP xml.apache.org

XEP www.renderx.com

IText www.lowagie.com/iText/

Unicorn www.unicorn-enterprises.com

Basic Document Structure

- An XML-FO document follows the syntax rules of XML; as a result, it is well formed.

The following code snippet shows the basic document setup for XSL-FO:

<?xml version=”1.0” encoding=”utf-8”?>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<!-- layout master set -->

<!-- page masters: size and layout -->

<!-- page sequences and content -->

</fo:root>
- XSL-FO elements use the following namespace:

146

http://www.w3.org/1999/XSL/Format

- The element <fo:root> is the root element for the XSL-FO document. An XSL-FO

documentcan contain the following components:

• Page master • Page master set • Page sequences

Page Master: <fo:page-master>

- The page master describes the page size and layout. For example, we could use an

8.5 11-inch page or an A4 letter. The page master contains the dimensions for a page,

including width, height, and margins

- The <fo:simple-page-master> element defines the layout of a page. The following code

snippet describes a U.S. letter:

<fo:simple-page-master master-name=”simple”

page-height=”11in” page-width=”8.5in”

margin-top=”1in” margin-bottom=”1in”

margin-left=”1.25in” margin-right=”1.25in”>

</fo:simple-page-master>

The components of the page master are shown in Figure:

Notice the attributes for <fo:simple-page-master>. The attributes define the height and

width of the page, along with the size of the margins. The dimensions in this example are

listed in inches (in). the following Table lists the dimensions supported in XSL-FO :

147

Table : XSL-FO Dimensions

- Each page is divided into

five regions. Regions serve

as containers for the

document content. The

regions are depicted the in

Figure:

- The region-before and

region-after areas are

commonly used for page

headers and footers

- The region-body area is the

center of the page and

contains the main content.
- The region-start and

region-end sections are

commonly used for left and

right sidebars, respectively.

- During the definition of a page master, you specify the size of these regions using the

following elements:

• <fo:region-before>

• <fo:region-after>

• <fo:region-body>

• <fo:region-start>

• <fo:region-end>

Page Master Set: <fo:page-master-set>

A document can be composed of multiple pages, each with its own dimensions. The page

master set refers to the collection of page masters.

Page Sequences: <fo:page-sequence>

A page sequence defines a series of printed pages. Each page sequence refers to a page

master for its dimensions. The page sequence contains the actual content for the document.
The <fo:page-sequence> element contains:

(i) <fo:static-content> element

Unit Suffix Description

in Inches

mm Millimeters

cm Centimeters

pt Points

pc Picas

em Font size of the relevant font

ex X-height of the relevant font

px Pixels

148

(ii) <fo:flow> element

<fo:static-content> element

The <fo:static-content> element is used for page headers and footers. For example, we can

define a header for the company name and page number, and this information will appear

on every page.

<fo:flow> element

The <fo:flow> element contains a collection of text blocks. The <fo:flow> element is

similar to a collection of paragraphs. A body of text is defined using the <fo:block>

element.

<fo:block> element

The <fo:block> element is a child element of <fo:flow>. The <fo:block> element contains

free-flowing text that will wrap to the next line in a document if it overflows

EXAMPLE:

- In the following example, we develop the Xsl-Fo Document with the manually included
data. The header information includes book catalog title and page number, footer
information includes web site address of the company. Body includes set of paragraphs

- The XSL-FO document will hava “.fo” as extension. Once the XSL-FO document we

can generate PDF document by using Apache-FOP compiler.

- The process of conversion is shown in the following figure:

Example: Developing the XSL-FO file with the manually included data

Header_footer.fo

<?xml version=”1.0” encoding=”utf-8”?>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<!-- layout master set -->

<fo:layout-master-set>

<!-- page masters: size and layout -->

<fo:simple-page-master master-name=”simple” page-height=”11in” page-

width=”8.5in” margin-top=”1in” margin-

bottom=”1in” margin-left=”1.25in” margin-

right=”1.25in”>

149

<fo:region-body margin-top=”0.5in”/>

<fo:region-before extent=”3cm”/>

<fo:region-after extent=”1.5cm”/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name=”simple”>

<!-- header -->

<fo:static-content flow-name=”xsl-region-before”>

<fo:block text-align=”end” font-size=”10pt”

font-family=”serif” line-height=”14pt”

> Ez Books Catalog - page

<fo:page-number/>

</fo:block>

</fo:static-content>

<!-- footer -->

<fo:static-content flow-name=”xsl-region-after”>

<fo:block text-align=”center” font-size=”10pt” font-family=”serif”

 line-height=”14pt” >

Visit our website http://www.ezbooks.web

</fo:block>

</fo:static-content>

<!-- body -->

<fo:flow flow-name=”xsl-region-body”>

<!-- this defines a level 1 heading with orange background -->

<fo:block font-size=”18pt” font-family=”sans-serif” line-height=”24pt”

space-after.optimum=”15pt”

background-color=”orange” color=”white”

text-align=”center”

padding-top=”3pt”>

Ez Books Online

</fo:block>

<!-- Paragraph that contains info about the company -->

<fo:block font-size=”12pt” font-family=”sans-serif” line-height=”15pt” space-

after.optimum=”14pt” text-align=”justify”>

Welcome to Ez Books Online, the world’s smallest online book store. Our company’s

mission is to sell books on Java, Thrillers and Romance. We have something for

everyone...so we think. Feel free to browse our catalog and if you find a book of interest

150

then send us an e-mail.

Thanks for visiting!

</fo:block>

<!-- insert page break for second page -->

<fo:block break-before=”page”>

A page break is inserted before this block. Notice we have the headers and footers in place.

This was accomplished with the fo-static-content elements. We can continue on...business

as usual.

</fo:block>

</fo:flow>

</fo:page-sequence>

</fo:root>

Follow these steps to generate a PDF document from header_footer.fo:

1. Open an MS-DOS window.

2. Move to the directory c:\xsl_fo, in which header_footer.fo is stored

3. Set up the Java classpath by typing setpaths.

4. Execute Apache-FOP by typing the following command:

c:\xsl_fo >fop header_footer.fo header_footer.pdf.

the contenet of pdf is shown below:

Graphics

- XSL-FO also allows for the insertion of external graphic images. The graphic formats
supported are dependent on the XSL-FO formatting engine. The Apache-FOP

formatting engine supports the popular graphics formats: GIF, JPEG, and BMP.

- The following code fragment inserts the image smiley.jpg:

<fo:block text-align=”center”>

151

<fo:external-graphic src=”smiley.jpg” width=”200px” height=”200px”/>

</fo:block>

Tables

- XSL-FO has rich support for structuring tabular data. There are many similarities

- between HTML tables and XSL-FO tables. The following Table lists the HTML table

elements with their corresponding XSL-FO table elements:

HTML Element XSL-FO Element

TABLE fo:table-and-caption (or)

fo:table
CAPTION fo:table-caption

COL fo:table-column

COLGROUP Not applicable

TBODY fo:table-body

TFOOT fo:table-footer

TR fo:table-row

TH fo:table-header

TD fo:table-cell

- The following code fragment defines the basic structure of the table:

- <fo:table>

- <!-- define column widths -->

- <fo:table-column column-width=”120pt”/>

- <fo:table-column column-width=”200pt”/>

- <fo:table-column column-width=”80pt”/>

- <fo:table-header>

- <fo:table-row>

- <fo:table-cell><fo:block font-weight=”bold”>Author</fo:block></fo:table-cell>

- <fo:table-cell><fo:block font-weight=”bold”>Title</fo:block> </fo:table-cell>

- <fo:table-cell><fo:block font-weight=”bold”>Price (USD)</fo:block></fo:table-cell>

- </fo:table-row>

- </fo:table-header>

- <!-- insert table body and rows here -->

- <fo:table-body>

- <fo:table-row>

- <fo:table-cell><fo:block>Michael Daconta</fo:block></fo:table-cell>

- <fo:table-cell><fo:block>XML Development with Java 2</fo:block></fo:table-cell>

- <fo:table-cell><fo:block>37.99</fo:block></fo:table-cell>

- </fo:table-row>

- <fo:table-row>

- <fo:table-cell><fo:block>E. Lynn Harris</fo:block></fo:table-cell>

- <fo:table-cell><fo:block>Any Way The Wind Blows</fo:block></fo:table-cell>

152

- <fo:table-cell><fo:block>19.95</fo:block></fo:table-cell>

- </fo:table-row>

- </fo:table-body>

- </fo:table>

- <fo:table-column> - element - it is used to specify column width

The output for the above code in the PDF document is shown below:

7. GENERATING XSL-FO TABLES USING XSLT (OR)

DYNAMICALLY CREATE THE XSL-FO FILE USING AN XSLT TRANSLATION

- In this section, we’ll use XSLT to automatically generate the XSL-FO document. The

file sort.xml contains a list of the books.

- We can develop an XSL style sheet(booklist_table.xsl) that will automatically

construct the XSL-FO document by dynamically contructing tables row for each book

found in the sort.xml file using <xsl:for-each> . This process is illustrated in Figure:

The content of booklist_table.xsl shown below:

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:fo=”http://www.w3.org/1999/XSL/Format” version=”1.0”>

<xsl:template match=”/”>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<!-- layout information -->

<fo:simple-page-master master-name=”simple” page-height=”11in”

page-width=”8.5in” margin-top=”1in”

margin-bottom=”2in” margin-

153

left=”1.25in” margin-right=”1.25in”>

<fo:region-body margin-top=”0.5in”/>

<fo:region-before extent=”3cm”/>

<fo:region-after extent=”1.5cm”/>

</fo:simple-page-master>

</fo:layout-master-set>

<!-- end: defines page layout -->

<fo:page-sequence master-name=”simple”>

<fo:flow flow-name=”xsl-region-body”>

<!-- table start -->

<fo:table border-style=”solid” border-width=”.1mm” >

<!-- define column widths -->

<fo:table-column column-width=”120pt”/>

<fo:table-column column-width=”200pt”/>

<fo:table-column column-width=”80pt”/>

<fo:table-header>

<fo:table-row >

<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block>Author</fo:block>

</fo:table-cell>

<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block >Title</fo:block>

</fo:table-cell>

<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block>Price (USD)</fo:block>

</fo:table-cell>

</fo:table-row>

</fo:table-header>

<fo:table-body>

<xsl:for-each select=”booklist/book” >

<fo:table-row>

<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block><xsl:value-of select=”author” /></fo:block>

</fo:table-cell>

<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block><xsl:value-of select=”title” /></fo:block>

</fo:table-cell>

<fo:table-cell border-style=”solid” border-width=”.1mm”>

<fo:block><xsl:value-of select=”price” /></fo:block>

</fo:table-cell>

154

</fo:table-row>

</xsl:for-each>

</fo:table-body>

</fo:table>

<!-- table end -->

</fo:flow>

</fo:page-sequence>

</fo:root>

</xsl:template>

</xsl:stylesheet>

Generating a PDF Document

1. Open an MS-DOS window.

2. Move to the directory c:\xsl_fo, in which sort.xml and booklist_table.xsl are stored

3. Set up the Java classpath by typing setpaths.

4. Execute Apache-FOP by typing the following command:

c:\xsl_fo >fop -xml booklist.xml -xsl booklist_table.xsl dyntable.pdf

The output of dyntable.pdf is shown below:

8. WEB APPLICATION INTEGRATION: JAVA SERVLETS, XSLT, AND XSL-FO
In this section, develop a Web application that integrates Java servlets, XSLT, and XSL-

FO. We will develop a Java servlet to pass an XML document and XSL style sheet to the

Apache-FOP formatting engine. The XML document is sort.xml. The XSL style sheet,

booklist_table.xsl, contains

generate a table. The servlet

the XSL-FO, contains the XSL-FO

will respond with the PDF document

template code to

generated by the

155

Apache-FOP formatting engine. The application interaction is shown in Figure

DEVELOPING THE JAVA SERVLET

The Java servlet handles an HTTP GET request. The servlet sets up a reference to the

files booklist.xml and booklist_table.xsl. The Apache-FOP API provides access to the

Apache-FOP formatting engine via the class org.apache.fop.apps.Driver. The following

code creates an instance of the driver and sets the renderer to PDF:

// setup the driver for PDF

Driver driver = new Driver()

driver.setRenderer(Driver.RENDER_PDF);

Next, the servlet creates a file reference for the XML document and XSL style sheet.

Because the servlet is running in the context of a servlet engine, we need to retrieve the

real path to the Web application’s root. The XSLTInputHandler class transforms the XML

document using the XSL style sheet, and the resulting document is input for the Apache-

FOP processing engine

The complete program is given below:

public class EzFopServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

try {

// get the application root for this web app

String xmlFileName = getServletContext().getRealPath(“/”) +“booklist.xml”;

String xslFileName = getServletContext().getRealPath(“/”)

+“booklist_table.xsl”; File xmlFile = new File(xmlFileName);

File xslFile = new File(xslFileName);

// setup the driver for PDF

156

Driver driver = new Driver();

driver.setRenderer(Driver.RENDER_P

DF);

// create an input handler for the XSLT transformation

XSLTInputHandler inputHandler =new XSLTInputHandler(xmlFile,

xslFile); XMLReader parser = inputHandler.getParser();

// setup the output for XSL-FO formatter process

// temporarily place in a ByteArrayOutputStream

ByteArrayOutputStream out = new

ByteArrayOutputStream(); driver.setOutputStream(out);

// Run the formatter based on the XSL-FO document

driver.render(parser, inputHandler.getInputSource());

// The out object has the result of the XSL-FO formatter process

// Retrieve the content from ByteArray

byte[] content = out.toByteArray();

// Setup the response for the web browser

response.setContentType(“application/pdf”)

;

response.setContentLength(content.length);

// Finally, send the result to the browser!

OutputStream outputToBrowser =

response.getOutputStream();

outputToBrowser.write(content);

outputToBrowser.flush();

}catch (Exception exc){ }

}

}

After deploying the servlet program in the Tomcat server, access the EzFopServlet Web

application using http://localhost:8080/ EzFopServlet

157

CHAPTER 9

MODELING DATABASES IN XML

1. INTEGRATING XML WITH DATABASES

XML and database integration is important because XML provides a standard technique to

describe data. By leveraging XML, a company can convert its existing corporate data into

a format that is consumable by its trading partners. XML allows the development team to

define a set of custom tags specific to its industry. A trading partner can import

the XML data into its system using the given format. The trading partner also has the

option of converting the data to a different XML format using XSLT

XML Database Solutions

XML database solutions generally come in two flavors:

- XML database mapping

- Native XML support

2. XML DATABASE MAPPING

It provides a mapping between the XML document and the database fields. The system
dynamically converts SQL result sets to XML documents. Depending on the

sophistication of the product, it may provide a graphical tool to map the database fields to
the desired XML elements. Other tools support a configuration file that defines the

mapping. These tools continue to store the information in relational database management

system (RDBMS) format. They simply provide an XML conversion process that is

normally implemented as a server-side Web application. This solution is depicted in the

following Figure: Mapping XML documents to database fields

XML document Relational Database

158

The products that provide XML database mappings is listed below:

Product Company

DB2 Extender IBM

SQL Server 2000 Microsoft

Oracle 8i & 9i Oracle

DataMirror DB/XML DataMirror

webMethods webMethods

Excelon Excelon

3. NATIVE XML SUPPORT

The second type of XML database solution actually stores the XML data in the document

in its native format. Each product uses its own proprietary serialization technique to store
the data. However, when the data is retrieved, it represents an XML document. This

solution is depicted in the following Figure: Native XML databases

XML Document Native XML Database

Products that provide native XML document support are listed below:

Product Company

TEXTML IXIA Soft

Oracle 8i and 9i Oracle

Excelon Excelon

dbXML dbXML Group

Tamino Software AG

4. MODELING DATABASES IN XML

In this section, you’ll learn how to model a database in XML using Java. When we model

a database, we provide an external representation of the database contents For our sample

159

program, we’ll utilize a database that contains information on properties. We’ll model the rental

property database as an XML document.

XML document Relational Database

- One possible solution is to use Java servlets and JDBC. Java servlets are server-side

components that reside in a Web server or application server. Java servlets are

commonly used to handle requests from Web browsers using the HTTP protocol.

- A key advantage to using servlets is the thin-client interface. The servlets handle the

request on the server side and respond by generating an HTML page dynamically The

browser only has to provide support of HTML. As a result, there is zero client-side

administration

- We can develop a servlet that uses JDBC. The servlet will make the appropriate query

to the database and use Java Database Connectivity (JDBC) API result set metadata to

create the elements

- In this section we will learn XML data binding features of Java Architecture for XML

Binding (JAXB). JAXB provides a framework for representing XML documents as Java

objects. Using the JAXB framework, we can guarantee that the documents processed

by our system are well formed. Also, we have the option of validating the XML data

against a schema.

- In the JAXB framework, we can parse XML documents into a suitable Java object. This

technique is referred to as unmarshaling. The JAXB framework also provides the

capability to generate XML documents from Java objects, which is referred to as

marshaling. The process is illustrated in the Figure: JAXB marshaling and

unmarshaling

160

JAXB is easier to use and a more efficient technique for processing XML documents than

the SAX or DOM API. Using the SAX API, you have to create a custom content handler

for each XML document structure.

Using JAXB, an application can parse an XML document by simply unmarshaling the data

from an input stream. JAXB is similar to DOM in that we can create XML documents

programmatically and perform validation. However, the hindrance with DOM is the

complex API. If we have an XML tree, using the DOM API, we have to traverse through

the tree to retrieve elements. However, with JAXB, we retrieve the data from the XML

document by simply calling a method on an object. JAXB allows us to define Java objects

that map to XML documents, so we can easily retrieve data. The JAXB framework also

ensures the type safety of the data

5. JAXB SOLUTION

In the JAXB solution, we will model the rental property database as an XML document.

This process involves the following steps:

1. Review the database schema.

2. Construct the desired XML document.

3. Define a schema for the XML document.

4. Create the JAXB binding schema.

5. Generate the JAXB classes based on the schema.

6. Develop a Data Access Object (DAO).

7. Develop a servlet for HTTP access.

Figure: “The rental property application architecture” illustrates the application

architecture. RentalXMLServlet communicates with RentalDAO to retrieve information

from the database. Once the information is retrieved by RentalDAO, RentalXMLServlet

generates an XML document

REVIEWING THE DATABASE SCHEMA

We have an existing database for the rental properties Table 10.3 contains the database

schema.

161

TABLE 10.3 Rental Property Database Schema

FIELD TYPE

prop_num NUMBER

Name VARCHAR2

street_address VARCHAR2

City VARCHAR2

State VARCHAR2

zip_code VARCHAR2

size_sq NUMBER

bed_count NUMBER

bath_count NUMBER

monthly_rent NUMBER

voice_phone VARCHAR2

fax_phone VARCHAR2

CONSTRUCTING THE DESIRED XML DOCUMENT

The desired output XML document describes the rental property. However, the XML

document does not use the exact field names listed in the database schema. Instead, the

XML document provides a custom mapping of the database fields to XML element names.

Table 10.4 contains the mapping.

XML Database Mapping
DatabaseField XMLElementName

prop_num <prop_id>

Name <name>

street_address <street>

City <city>

State <state>

zip_code <postal_code>

size_sq <square_footage>

bed_count <bedrooms>

bath_count <bath>

monthly_rent <price>

voice_phone <phone>

fax_phone <fax>

A rental property is described with a root element of <rental_property>, as shown in

the following code:

<rental_property>

<prop_id>1</prop_id>

<name>The Meadows</name>

<address>

<street>251 Eisenhower Blvd</street>

<city>Houston</city>

162

<state>TX</state>

<postal_code>77033</postal_code>

</address>

<square_footage>500.0</square_footage>

<bedrooms>1.0</bedrooms>

<bath>1.0</bath>

<price>600</price>

<contact>

<phone>555-555-1212</phone>

<fax>555-555-1414</fax>

</contact>

</rental_property>

Notice how the <address> element contains the subelements <street>, <city>, <state>, and

<postal_code>. A similar approach is taken for the contact information. The

<contact> element contains the <phone> and <fax> elements for the voice number and fax

number, respectively

In our system, we’ll normally work with a collection of rental properties. This collection is

modeled using a <rental_property_list> element, as shown here:

<rental_property_list>

<rental_property> … </rental_property>

<rental_property> … </rental_property>

… …

</rental_property_list>

DEFINING A SCHEMA FOR THE XML DOCUMENT

We will define the Document Type Definition (DTD). The DTD schema format was chosen

because JAXB 1.0 (early access) only supports DTDs. The following Listing contains the

DTD for our rental property list.

rental_property.dtd

<!ELEMENT rental_property_list (rental_property)*>

<!ELEMENT rental_property (prop_id, name, address, square_footage,

bedrooms, bath, price, contact)>

<!ELEMENT prop_id (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT address (street, city, state, postal_code)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

163

<!ELEMENT postal_code (#PCDATA)>

<!ELEMENT square_footage (#PCDATA)>

<!ELEMENT bedrooms (#PCDATA)>

<!ELEMENT bath (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT contact (phone, fax)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT fax (#PCDATA)>

CREATING THE JAXB BINDING SCHEMA

The JAXB binding schema is an XML document that contains instructions on how to bind

a DTD to a Java class.

Using the JAXB binding schema, we can define the names of the generated Java classes,

map element names to specific properties in the Java class, and provide the mapping rules

for attributes
The following code example informs the JAXB system that the element

<rental_property_list> should be mapped to a Java class and that it is the root element for

the XML document:

<element name=”rental_property_list” type=”class” root=”true”/>

The binding schema also allows us to define a conversion rule for elements. For example,

the numerical data for the rental property, such as price, square footage, and number of

rooms, is always represented in the DTD as text data (#PCDATA). This is one of the

limitations of the DTD format. However, by using JAXB, we can specify that a given

element.
The following code defines the package name as xml.jaxb:

<options package=”xml.jaxb”/>

See the JAXB specification for details on the binding schema file format. Now, let’s look

at the JAXB binding schema file for our rental property example. The schema files

normally use the filename extension .xjs (for XML Java schema). The following Listing

contains the complete code for our JAXB binding schema, rental_property.xjs.

rental_property.xjs

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<!DOCTYPE xml-java-binding-schema

SYSTEM ”http://java.sun.com/dtd/jaxb/1.0-ea/xjs.dtd”>

<xml-java-binding-schema version=”1.0-ea”>

<options package=”xmlunleashed.ch10.jaxb”/>

<element name=”rental_property_list” type=”class” root=”true”>

<content property=”list”/>

</element>

164

<element name=”square_footage” type=”value” convert=”double”/>

<element name=”bedrooms” type=”value” convert=”double”/>

<element name=”bath” type=”value” convert=”double”/>

<element name=”price” type=”value” convert=”BigDecimal”/>

<conversion name=”BigDecimal” type=”java.math.BigDecimal”/>

</xml-java-binding-schema>

6. GENERATING THE JAXB CLASSES BASED ON SCHEMAS

Now we are ready to generate the Java source files based on our schemas. JAXB provides

a schema compiler for generating the Java source files. The schema compiler takes as input

the DTD and the JAXB binding schema. The following Figure illustrates the process.

Figure:Generating Java classes with the JAXB compiler

Type everything on one line:

>java com.sun.tools.xjc.Main rental_property.dtd rental_property.xjs

-d source_code

This command generates source code in the source_code directory. The following files

are generated:

• RentalPropertyList.java. This file models the <rental_property_list> element.

• RentalProperty.java. This file models the <rental_property> element.

• Address.java. This file models the <address> subelement.

• Contact.java. This file models the <contact> subelement

The partial source code for “RentalProperty.java” is given below:

public class RentalProperty extends MarshallableObject implements Element

{

private String _PropId;

private String _Name;

private Address _Address;

private double _SquareFootage;

private boolean has_SquareFootage = false;

private double _Bedrooms;

private boolean has_Bedrooms = false;

165

private double _Bath;

private boolean has_Bath = false;

private BigDecimal _Price;

private Contact _Contact;

public String getPropId() { return _PropId; }

public void setPropId(String _PropId) { this._PropId = _PropId; }

}

public void marshal(Marshaller m) throws IOException

{

// code to output the XML document

}

public void unmarshal(Unmarshaller u) throws UnmarshalException

{

// code to read in the XML document

}

… …

}

7. DEVELOPING A DATA ACCESS OBJECT (DAO)

A Data Access Object (DAO) provides access to the backend database. The goal of the

DAO design pattern is to provide a higher level of abstraction for database access. The

DAO encapsulates the complex JDBC and SQL calls. The DAO provides access to the

backend database via public methods. The DAO converts a result set to a collection of

objects. The objects model the data stored in the database. The application interaction

with a DAO is shown in the following Figure:

Figure:Data Access Object design pattern

Let’s examine the components of the RentalPropertyDAO source code

public class RentalPropertyDAO

{

protected Connection myConn;

public RentalPropertyDAO()

{

166

try {

Class.forName(“sun.jdbc.odbc.JdbOdbcDriver”); String

conStr=”jdbc:odbc:RentalPropertyDSN”;

myConn = DriverManager.getConnection (conStr, ”test”, ”test”);

}catch (Exception exc) { }

}

public RentalPropertyList getRentalProperties()

{

RentalPropertyList theRentalPropertyList = new

RentalPropertyList(); java.util.List theList =

theRentalPropertyList.getList();

try {

Statement myStmt = myConn.createStatement();

ResultSet myRs = myStmt.executeQuery(“SELECT *FROM

rental_properties”); RentalProperty tempProperty = null;

// build a collection of JAXB RentalProperty

objects while (myRs.next()) {

tempProperty = createRentalProperty(myRs);

theList.add(tempProperty);

}

// be sure to validate the new list

theRentalPropertyList.validate();

myRs.close();

myStmt.close();

}catch (Exception exc) { }

return theRentalPropertyList;

}

protected RentalProperty createRentalProperty(ResultSet rs)

{

RentalProperty theProperty = new RentalProperty();

Address theAddress = new Address();

Contact theContact = new Contact();

try {

// set the rental property number and name

theProperty.setPropId(rs.getString(“prop_num”));

theProperty.setName(rs.getString(“name”));

// set the address

theAddress.setStreet(rs.getString(“street_address”));

theAddress.setCity(rs.getString(“city”));

theAddress.setState(rs.getString(“state”));

theAddress.setPostalCode(rs.getString(“zip_code”));

theProperty.setAddress(theAddress);

167

// set the square footage, bedrooms, bath count and rent

theProperty.setSquareFootage(rs.getDouble(“size_sq”));

theProperty.setBedrooms(rs.getDouble(“bed_count”));

theProperty.setBath(rs.getDouble(“bath_count”));

theProperty.setPrice(new BigDecimal(rs.getDouble(“monthly_rent”)));

// set the contact information

theContact.setPhone(rs.getString(“voice_phone”));

theContact.setFax(rs.getString(“fax_phone”));

theProperty.setContact(theContact);

}catch (SQLException exc) {

} return theProperty;

}

}

Now that we have the DAO in place, a client program can easily retrieve information

from the database. The RentalPropertyList collection contains JAXB RentalProperty

objects. These objects are capable of producing an XML representation of their data The

XML data is available by calling the marshal() method.

8. DEVELOPING A SERVLET FOR HTTP ACCESS

At this point, we have constructed the RentalPropertyDAO Data Access Object. This DAO

is capable of retrieving information from a database and providing a collection of objects.

Thanks to the JAXB framework, these objects can be marshaled into XML. Now we need

to provide an HTTP interface for RentalPropertyDAO so that a Web browser can interact

with our system. Java servlets provides support for the HTTP protocol.

we’ll use a servlet to handle the requests to the DAO. In the servlet, we’ll call the

appropriate method and return the result as an XML document. The following Figure

depicts the application interaction

RentalXMLServlet.java

public class RentalXMLServlet extends HttpServlet

{

public void doGet(HttpServletRequest request,HttpServletResponse response) IOException

168

{

ServletOutputStream out = null;

RentalPropertyList theList =

null; try {

response.setContentType(“text/xml”);

// Retrieve the servlet output stream

out = response.getOutputStream();

// Retrieve a list of rental properties

theList = myRentalDAO.getRentalProperties();

// Marshal the list as an XML document

theList.marshal(out);

}catch (Exception e) {

} finally {

out.close();

}

}

}

Testing the Application

- Once Tomcat 4 is installed, we need to add a new Web application that points to the

source code directory
- Now we need to test RentalXMLServlet. In a Web browser, open

http://localhost:8080/servlet/RentalXMLServlet

169

CHAPTER 10

XML PARSER

1. WHAT ARE XML PARSERS?

- An XML parser is a software library or package that provides interfaces for client
applications to work with an XML document

- XML Parser provides way how to access or modify data present in an XML document

from programming languages
- XML parser validates the document and check that the document is well formatted.

- Let's understand the working of XML parser by the figure given below:

Types of XML Parsers

These are the two main types of XML Parsers:

1. DOM(Document Object Model)

2. SAX (Simple API for XML)

2. PARSING XML USING DOCUMENT OBJECT MODEL

- The Document Object Model (DOM) provides a way of representing an XML document

in main memory as tree structure, so that it can be manipulated by your software.

- DOM is a standard application programming interface (API) that makes it easy for

programmers to access elements and delete, add, or edit content and attributes.

- DOM was proposed by the World Wide Web Consortium (W3C) in August of 1997

170

- DOM by itself is just a specification for a set of interfaces defined by W3C
- The DOM interfaces are defined independent of any particular programming

language. You can write DOM code in just about any programming language, such as

Java, ECMAScript (a standardized version of JavaScript/JScript), or C++

- There are DOM APIs for each of these languages. W3C uses the Object Management

Group’s (OMG) Interface Definition Language (IDL) to define DOM in a language-

neutral way. Language-specific bindings, or DOM interfaces, exist for these languages.

The DOM specification itself includes bindings for Java and ECMAScript

What DOM Is Not?

- DOM is not a mechanism for storing an object as XML documents. DOM is an object

model for representing XML documents in your code.
- DOM is not a set of data documents. structures; rather it is an object model describing XML

- DOM does not specify what information in a document is relevant or how information

should be structured.

- DOM has nothing to do with COM, CORBA, or other technologies that include the

words object model.

Why Do I Need DOM?

- DOM is to create or modify an XML document programmatically.

- You can use DOM just to read an XML document, but, SAX is often a better

is often a better

candidate for the read-only case

- If you want to create a document, you start by creating a root element and then add

attributes, content, sub-elements, and so on. Once you are finished, you can write the

document out to disk or send it over a network
- If you want to modify an existing XML document, you can read it in from a file or

other I/O source. The entire document is read into memory all at once, so you can

change any part of it at any time. The representation in memory is a tree structure that

starts with a root element that contains attributes, content, and sub-elements. You can

traverse this tree, search for a specific node, and change its attributes or data. You can

also add attributes or elements anywhere in the tree, as long as you don’t violate the

rules of a wellformed document. Again, you can write the modified document back

out to disk or to the network

Disadvantages of Using DOM

- One of the big issues is that DOM can be memory intensive. When an XML document

is loaded, the entire document is read in at once. A large document will require a large

amount of memory to represent it

- SAX, don’t read in the entire document, so they are better in terms of memory efficiency

for some applications
- DOM is not practical for small devices such as PDAs and cellular phones

171

DOM Levels

- The DOM working group works on phases (or levels) of the specification. There are

three levels are in the works.

- The DOM Level 1 and Level 2 specifications are W3C recommendations. The

specification of level 1and 2 are final
Level 1:

- Level 1 allows traversal of an XML document as well as the manipulation of the

content in that document
Level2:

- Level 2 extends Level 1 with additional features such as namespace support, events,

ranges, and so on
Level 3:

- It is currently a working draft. This means that it is under active development and

subject to change.

DOM Core

The DOM core is available in DOM Level 1 and beyond. It permits you to create and

manipulate XML documents in memory.

DOM is a tree structure that represents elements, attributes, and content. As an example,

let’s consider a simple XML document, as shown below:

<purchase-order>

<customer>James Bond</customer>

<merchant>Spies R Us</merchant>

<items>

<item>Night vision camera</item>

<item>Vibrating massager</item>

</items>

</purchase-order>

Parents, Children, and Siblings

DOM specification uses the words parents, children, and siblings to represent nodes and

their relationships to one another Parent nodes may have zero or more child nodes. Parent

nodes themselves may be the child nodes of another parent node. The ultimate parent of
all nodes is, of course, the root node. Siblings represent the child nodes of the same

parent. These abstract descriptions of nodes are mapped to elements, attributes, text, and

other information in an XML document. DOM interfaces contain methods for obtaining

the parent, children, and siblings of any node. The root node has no parent, and there will

be nodes that have no children or siblings.

The following Figureshows a diagram of the tree structure representing the XML

document <purchase-order> listed above:

172

DOM Interfaces

The DOM interfaces are defined in IDL so that they are language neutral The fundamental

interfaces are listed in the following table, along with a brief description of each:
INTERFACE DESCRIPTION

Node The primary interface for the DOM. It can be an element,

attribute, text, and so on, and contains methods for traversing a

DOM tree
NodeList An ordered collection of Nodes

NamedNodeMap An unordered collection of Nodes that can be accessed by name
and used with attributes.

Document A Node representing an entire document. It contains the root
Node

DocumentFragment A Node representing a piece of a document. It’s useful for
extracting or inserting a fragment into a document

Element A Node representing an XML element.

Attr A Node representing an XML attribute

CharacterData A Node representing character data.

Comment A CharacterData node representing a comment

DOMException An exception raised upon failure of an operation.

DOMImplementation Methods for creating documents and determining whether an
implementation has certain features

173

The following figure shows shows the relationships among the interfaces described in

The previous Table:

Common DOM methods

When you are working with the DOM, there are several methods you'll use often:

• Document.getDocumentElement() - Returns the root element of the document.

• Node.getFirstChild() - Returns the first child of a given Node.

• Node.getLastChild() - Returns the last child of a given Node.

• Node.getNextSibling() - These methods return the next sibling of a given Node.

• Node.getPreviousSibling() - These methods return the previous sibling of a given

Node.

• Node.getAttribute(attrName) - For a given Node, returns the attribute with the

requested name

The extended interfaces are listed in Table in the following table along with a brief

description of each.

Interface Description

CDATASection Text representing CDATA

DocumentType A node representing document type

Notation A node with public and system IDs of a notation

Entity A node representing an entity that’s either parsed or unparsed

EntityReference A node representing an entity reference

ProcessingInstruction A node representing an XML processing instruction

Java Binding

- The DOM working group supplies Java language bindings as part of the DOM

specification.

- These bindings are sets of Java source files containing Java interfaces, and they map

exactly to the DOM interfaces described earlier

Popular DOM parser

- The package org.w3c.dom contains the Java interfaces but does not include a usable

174

implementation. In order to make the interfaces do something useful, you will need an

implementation, or a parser

- A number of DOM implementations are available for Java. Two of the most popular are

o Java APIs for XML Processing (JAXP), developed by Sun Microsystems

o Xerces developed as part of the Apache XML project

3. STEPS TO BE FOLLOWED WHEN USING DOM
Following are the steps used while parsing a document using DOM Parser.

• Import XML-related packages.

• Create a DocumentBuilder

• Create a Document from a file or stream

• Extract the root element

• Examine attributes

• Examine sub-elements

➢ Import XML-related packages

import org.w3c.dom.*;

import javax.xml.parsers.*;

➢ Create a DocumentBuilder

DocumentBuilderFactory factory =DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

➢ Create a Document from a file or stream

StringBuilder xmlStringBuilder = new StringBuilder();

xmlStringBuilder.append("<?xml version="1.0"?> <class>

</class>");

ByteArrayInputStream input = new ByteArrayInputStream(

xmlStringBuilder.toString().getBytes("UTF-8"));

Document doc = builder.parse(input);

➢ Extract the root element

Element root = document.getDocumentElement();

➢ Examine attributes

//returns specific attribute

element.getAttribute("attributeName");

//returns a Map (table) of names/values

element.getAttributes();

➢ Examine sub-elements

//returns a list of subelements of specified name

element.getElementsByTagName("subelementName");

175

//returns a list of all child nodes

element.getChildNodes();

4. WALKING THROUGH AN XML DOCUMENT
- Let’s look at an example in which we load an XML document from disk and print out

some of its contents. In the first example, we will print out just the element names using

getNodeName() from the Node interface.

- We will start from the root and recursively print all child node names, then indenting

each level for clarity
- The source code for SimpleWalker.java is shown below:

import java.io.*; import org.w3c.dom.*;

import javax.xml.parsers.*;

public class SimpleWalker

{

protected DocumentBuilder docBuilder;

protected Element root;

public SimpleWalker() throws Exception

{

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

docBuilder = dbf.newDocumentBuilder();

DOMImplementation domImp = docBuilder.getDOMImplementation();

if (domImp.hasFeature(“XML”, “2.0”))

System.out.println(“Parser supports extended interfaces”);

}

public void parse(String fileName) throws Exception

{

Document doc = docBuilder.parse(new FileInputStream(fileName));

root = doc.getDocumentElement();

System.out.println(“Root element is “ + root.getNodeName());

printElement(“”, root);

}

public void printElement(String indent, Node aNode)

{

System.out.println(indent + “<” + aNode.getNodeName() + “>”);

Node child = aNode.getFirstChild();

while (child != null) {

printElement(indent + “\t”, child);

child = child.getNextSibling();

}

System.out.println(indent + “</” + aNode.getNodeName() + “>”);

}

public static void main(String args[]) throws Exception

176

{

SimpleWalker sw = new SimpleWalker();

sw.parse(args[0]);

}

}

- Looking at the code, javax.xml.parsers package contains two critical classes for DOM:

DocumentBuilder and DocumentBuilderFactory. These classes are needed because the

DOM interfaces do not provide a way to load or create documents

- There are several methods in the DocumentBuilder class for loading and parsing an XML

file. You can supply a java.io.File, an InputStream, or other sourceWe will use

FileInputStream to load our file, but first we need to get an instance of DocumentBuilder

which is an abstract class, so we can’t create an instance directly.

- That’s the job of DocumentBuilderFactory, which is also abstract, but it has a static

factory method, newInstance(), that we can use to create a DocumentBuilder.

- From there Once we have a Document object, we can get the root element by calling the

getDocumentElement() method. It turns out that the Document object itself is a node, but

it’s not the root node. We must call getDocumentElement() to get the root we can use

one of the parse() methods to give us a Document object.

- Now we are totally in the DOM world. We can also obtain a DOMImplementation to

find out what features our parser has. In this case, we are trying to find out whether

extended interfaces are supported

Sample input file:

A sample XML input file, library.xml is shown below:

<?xml version=”1.0” encoding=”UTF-8”?>

<library>

<fiction>

<book>Moby Dick</book>

</fiction>

<biography>

177

<book>The Last Lion, Winston Spencer Churchill</book>

</biography>

</library>

To run the program:

The example can be executed using the following command:

E:\xmldom>java SimpleWalker library.xml

Sample output:

Parser supports extended interfaces

Root element is library
<#text>

</#text>

<fiction>

<#text>

</#text>

<book>

<#text>

</#text>

</book>

</fiction>

<#text>

</#text>

<biography>

<#text>

</#text>

<book>

<#text>

</#text>

</book>

<#text>

</#text>

</biography>

<#text>

</#text>

</library>

Look at the output, what are all those <#text> elements. any text in an XML document

becomes a child node in DOM. If we call

getNodeName() on a text node, we get #text, not the text itself. If we want to get the text,

we must determine whether we have a text node and then call getNodeValue(). We need

only make a minor modification to the printElement() method of the above program. The

modified version is shown below:

public void printElement(String indent, Node aNode)

178

{

if (aNode.getNodeType() == Node.TEXT_NODE)

System.out.println(indent + aNode.getNodeValue());

else

{

System.out.println(indent + “<” + aNode.getNodeName() + “>”);

Node child = aNode.getFirstChild();

while (child != null) {

printElement(indent + “\t”, child);

child = child.getNextSibling();

}

System.out.println(indent + “</” + aNode.getNodeName() + “>”);

}

}
Once again compile and run the above program:

The example can be executed using the following command:

E:\xmldom>java SimpleWalker library.xml

Parser supports extended interfaces

Root element is library

<library>

<fiction>

<book>

Moby Dick

</book>

</fiction>

<biography>

<book>

The Last Lion, Winston Spencer Churchill

</book>

</biography>

</library>

- Notice that DOM parser treats any whitespace between elements as text.

- Depending on the type of node, we might need to use getNodeName(), getNodeValue(),

or maybe getAttributes().the following Table summarizes what each of the methods

gives you, depending on the interface type:

Interface getNodeName() getNodeValue() getAttributes()

Attr Name of the
attribute

Value of the
attribute

Null

CDATASection #cdata-section Content of the
CDATA section

Null

Comment #comment Content of the
comment

Null

179

Document #document Null Null

DocumentFragment #document-
fragment

null Null

DocumentType Document type
name

Null Null

Element Tag name Null NamedNodeMap

Entity Entity name Null -

EntityReference Name of the entity
referenced

Null Null

Notation Notation name Null Null

ProcessingInstruction Target Entire content
excluding the target

Null

Text #text Content of the text
node

Null

It’s important to note that attributes are not child nodes of elements. You must explicitly

call getAttributes() to obtain a NamedNodeMap containing the attributes. NamedNodeMap

is convenient for attributes because you can easily get a specific attribute by name or by

index (starting from 0)

5. CREATING AN XML DOCUMENT

- We will create an XML document in memory, from scratch, and then write it out to disk.

This is very useful, if you have data from a non-XML source, such as a database, and

you want to create an XML document based on the data

Here is the XML we need to create:

<?xml version="1.0" encoding="UTF-8"?>

<cars>

<carname type="formula one">Ferrari 101</carname>

<carname type="sports">Ferrari 202</carname>

</cars>

Here is the java source code that create the xml file shown above:

CreateXmlFileDemo.java

Import java.io.*;

import javax.xml.parsers.*;

import org.w3c.dom.*;

import javax.xml.transform.dom.*;

public class CreateXmlFileDemo {

public static void main(String argv[])

{ try {

DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance(); DocumentBuilder dBuilder =

dbFactory.newDocumentBuilder();

Document doc = dBuilder.newDocument();

180

// root element

Element cars = doc.createElement("cars");

doc.appendChild(rootElement);

// carname element

Element car1 = doc.createElement("carname");

Attr attrType = doc.createAttribute("type");

attrType.setValue("formula one");

car1.setAttributeNode(attrType);

car1.appendChild(doc.createTextNode("Ferrari 101"));

cars.appendChild(car1);

// carname element

Element car2 = doc.createElement("carname");

Attr attrType1 = doc.createAttribute("type");

attrType1.setValue("sports");

car2.setAttributeNode(attrType1);

car2.appendChild(doc.createTextNode("Ferrari 202"));

car2.appendChild(car2);

// write the content into xml file

TransformerFactory transformerFactory = TransformerFactory.newInstance();

Transformer transformer = transformerFactory.newTransformer();

DOMSource source = new DOMSource(doc);

//output to c:\cars.xml file

StreamResult result = new StreamResult(new

File("C:\\cars.xml")); transformer.transform(source, result);

// Output to console for testing

StreamResult consoleResult = new StreamResult(System.out);

transformer.transform(source, consoleResult);

} catch (Exception e)

{

e.printStackTrace();

}

}

}

Run the program:

e:\dom> java CreateXmlFileDemo

now you will see the XML output, just shown above in the console. You can also open

cars.xml file from c:\

181

6. DOM TRAVERSAL AND RANGE
- Traversal and range are features added in DOM Level 2. They are supported by Apache

Xerces. You can determine whether traversal is supported by calling the

hasFeature(“Traversal”, “2.0”) method of the DOMImplementation interface.

Traversal
- Traversal is a convenient way to walk through a DOM tree and select specific nodes.

This is useful when you want to find certain elements and perform operations on them.

Traversal Interfaces

- The traversal interfaces are listed in the following Table, along with a brief description

of each
Interface Description

NodeIterator Used to walk through nodes linearly. Represents a subtree as a
linear list

TreeWalker Represents a subtree as a tree view

NodeFilter Can be used in conjunction with NodeIterator and TreeWalker to
select specific nodes

DocumentTraversal Contains methods to create NodeIterator and TreeWalker
instances

Traversal Example

Let’s look at an example in which traversal is used. Let’s say we want to print out just the

names of books in our library. We can use NodeIterator to iterate through all the nodes and

define a NodeFilter to select only the nodes with the name “book.” When we find a book

node, we can get the value of the text content and print it out

There are two classes we need to define. The first one, IteratorApp.java, contains the

application code. The second one, NameNodeFilter.java, selects nodes with a given name

The source code for IteratorApp.java is shown below:

public class IteratorApp

{

protected DocumentBuilder docBuilder;

protected Document document;

protected Element root;

public IteratorApp() throws Exception {

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance(); docBuilder =

dbf.newDocumentBuilder();

DOMImplementation domImp =

docBuilder.getDOMImplementation(); if

(domImp.hasFeature(“Traversal”, “2.0”))

System.out.println(“Parser supports Traversal”);

}

182

public void parse(String fileName) throws Exception {

document = docBuilder.parse(new FileInputStream(fileName));

root = document.getDocumentElement();

System.out.println(“Root element is “ + root.getNodeName());

}

public void iterate() {

NodeIterator iter =((DocumentTraversal)document).createNodeIterator(

root,

NodeFilter.SHOW_ELEMENT, new

NameNodeFilter(“book”), true);

Node n = iter.nextNode();

while (n != null) {

System.out.println(n.getFirstChild().getNodeValue())

; n = iter.nextNode();

}

}

public static void main(String args[]) throws Exception

{ IteratorApp ia = new IteratorApp();

ia.parse(args[0]);

ia.iterate();

}

}

The source code for IteratorApp.java is shown below:

public class NameNodeFilter implements NodeFilter

{ protected String name;

public NameNodeFilter(String inName)

{ name = inName;

}

public short acceptNode(Node n) {

if (n.getNodeName().equals(name))

return FILTER_ACCEPT;

else

}

}

return FILTER_REJECT;

- We can create an instance of NodeIterator from the DocumentTraversal interface. But

how do we get an instance of a DocumentTraversal interface? It turns out that if traversal

is supported, the Document instance will also implement DocumentTraversal. If you

look carefully at the iterate() method, you will see that the document is downcast into

DocumentTraversal. The cast succeeds because traversal is supported by our

183

implementation (Xerces). If it wasn’t supported, a ClassCastException would be raised

at runtime

- The method for creating a NodeIterator is createNodeIterator(...), which accepts four

parameters:

o the root node

o a flag determining which nodes to show

o a possible NodeFilter

o a flag determining whether entity references are to be expanded.

- In our example, we start at the document root, because we want to search the entire

document. Constants in the NodeFilter interface define which nodes will be visible. You

can choose options such as elements, attributes, text, and so on. The NodeFilter is

optional. If you don’t want to use a NodeFilter, just supply “null” and no filter will be

applied.
- Here’s the output from IteratorApp:

Parser supports

Traversal Root element

is library Moby Dick

The Last Lion, Winston Spencer Churchill

Range

Range interfaces provide a convenient way to select, delete, extract, and insert content.

A range consists of two boundary points corresponding to the start and the end of the range.

A boundary point’s position in a Document or DocumentFragment tree can be

characterized by a node and an offset. The node is the container of the boundary point and

its position. The container and its ancestors are the ancestor containers of the boundary

point and its position. The offset within the node is the offset of the boundary point and its

position. If the container is an Attr, Document, DocumentFragment, Element, or

EntityReference node, the offset is between its child nodes. If the container is a

CharacterData, Comment, or ProcessingInstruction node, the offset is between the 16- bit

units of the UTF-16 encoded string contained by it.

The content of a range must be entirely within the subtree rooted by a single Document,

DocumentFragment, or Attr node. This common ancestor container is known as the root

container of the range. The tree rooted by the root container is known as the range’s context

tree

The boundary points of a range must have a common ancestor container that is either a

Document, DocumentFragment, or Attr node. DocumentType, Entity, or Notation

nodes cannot be ancestor of boundary point

Range Interfaces

The range interfaces are listed in the following table, along with a brief description of each:

184

Interfac Description

Range This interface describes a range and contains methods to define,
delete, insert content.

DocumentRange This interface creates a range

Range Example

Let’s look at an example in which range is used. Let’s say we want to delete the first

child node under the root. The source code for RangeApp.java is shown in the following

Listing. We must import org.w3c.dom.range in order to refer to the range interfaces.

import org.w3c.dom.*;

import org.w3c.dom.ranges.*;

import javax.xml.parsers.*;

public class RangeApp {

protected DocumentBuilder docBuilder;

protected Document document;

protected Element root;

public RangeApp() throws Exception {

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance(); docBuilder =

dbf.newDocumentBuilder();

DOMImplementation domImp =

docBuilder.getDOMImplementation(); if

(domImp.hasFeature(“Range”, “2.0”))

System.out.println(“Parser supports Range”);

}

public void parse(String fileName) throws Exception {

document = docBuilder.parse(new FileInputStream(fileName));

root = document.getDocumentElement();

System.out.println(“Root element is “ + root.getNodeName());

}

public void deleteRange() {

Range r = ((DocumentRange)document).createRange();

r.selectNodeContents(root.getFirstChild()); //select the range of first child node of root

r.deleteContents();//remove the range of first child node of root

}

public static void main(String args[]) throws Exception

{ RangeApp ra = new RangeApp();

ra.parse(args[0]);

ra.deleteRange();

}

}

185

Consider the following xml file:address.xml

<?xml version="1.0" encoding="UTF-8"?>

<address>

<fname> kajendran </fname>

<street>11/20, valluvar street</street>

<city>Chennai</city>

</address>

If you run the above program using the following command:

E:\dom>java RangeApp address.xml

After successful execution of this command, the content of address.xml file would be:

<?xml version="1.0" encoding="UTF-8"?>

<address>

<street>11/20, valluvar street</street>

<city>Chennai</city>

</address>

7. OTHER DOM IMPLEMENTATIONS
For resource-constrained devices such as PDAs and cellular phones, DOM is not suitable,

because it will takeup lots of memory. For these applications, a number of DOM-like APIs

have appeared.
1) JDOM
➢ It was originally developed as an open-source API for XML but has been accepted by

the Java Community Process (JCP JSR-102)

➢ JDOM was designed specifically for Java. In contrast, DOM is purely an interface

specification independent of any language

➢ The goal of W3C DOM is to be language independent, which works but can add a lot

of unnecessary complications. Here are some of the guiding principles of JDOM:
✓ JDOM should be straightforward for Java programmers.

✓ JDOM should support easy and efficient document modification.

✓ JDOM should hide the complexities of XML wherever possible

✓ JDOM should integrate with DOM and SAX.
✓ JDOM should be lightweight and fast.

✓ JDOM should solve 80 percent (or more) of Java/XML problems with 20

percent(or less) of the effort when compare with DOM

JDOM Example

Let’s create an XML document using JDOM. The source code for JDOMCreate.java

appears in the following Listing

import org.jdom.*;

186

import org.jdom.output.*;

public class JDOMCreate

{

public static void main(String args[]) throws Exception

{ Element root = new Element(“library”);

Document doc = new Document(root);

Element fiction = new Element(“fiction”);

Element book = new Element(“book”);

book.setAttribute(“author”, “Herman Melville”);

book.addContent(“Moby Dick”);

fiction.addContent(book);

root.addContent(fiction);

XMLOutputter outputter = new XMLOutputter(“\t”, true);

outputter.output(doc, System.out);

}

}
If you run the above program using:

e:\dom> java JDOMCreate

The output is shown below:

<?xml version=”1.0” encoding=”UTF-8”?>

<library>

<fiction>

<book author=”Herman Melville”>Moby Dick</book>

</fiction>

</library>
Reading XML document

- Reading and parsing an XML document is even easier. As mentioned earlier, JDOM is

not meant to be a parser replacement. JDOM uses existing parsers to avoid reinventing

the wheel.
- If you have an existing DOM or SAX parser, you can use it with JDOM

- The following example parses an XML document and then prints it out using

XMLOutputter. The source code for JDOMParse.java appears in the following Listing:

public class JDOMParse {

public static void main(String args[]) throws Exception

{ SAXBuilder builder = new SAXBuilder();

Document doc = builder.build(new

File(args[0]));

XMLOutputter outputter = new XMLOutputter(“\t”, true);

outputter.output(doc, System.out);

}

}

187

Other popular parser includes:
- StAX Parser - Parses the document in similar fashion to SAX parser but in more

efficient way.

- XPath Parser - Parses the XML based on expression and is used extensively in

conjuction with XSLT.

- DOM4J Parser - A java library to parse XML, XPath and XSLT using Java

Collections Framework , provides support for DOM, SAX and JAXP.

Small DOM-like Implementations for hand-held devices
- PDAs and cellular phones are rapidly becoming the terminals of choice for people on

the run. They are a lot easier to carry compared to a laptop. If you’re going to work with

XML on a PDA, something like DOM is a great help.

- There are smaller, simpler alternatives API available for PDAs, and you have several

solutions from which to choose.

NanoXML

- It looks a lot like DOM, but it’s much smaller Version 2.0 is about 33KB, but a light

version is available that’s less than 6KB
- The API contains a class called XMLElement, which is very similar to the Node

interface found in DOM

TinyXML

- It’s primarily for reading in an XML document, because it does not provide facilities to

create a document. It’s extremely simple, based primarily on one class, TinyParser, and

one interface, ParsedXML. All you need to do is call a static method in TinyParser to

parse a stream, file, or URL. This gives you an instance of a ParsedXML interface that

has only seven methods

kXML

- kXML is a DOM-like parser in the spiritof JDOM. designed specifically for J2ME

resource-constrained devices.

8. JAVA ARCHITECTURE FOR XML BINDING (JAXB)
- JAXB provides a means of automatically binding XML with Java objects. JAXB is being

developed through the Java Community Process (JCP) under JSR-31.

- JAXB can be considered a serialization mechanism from Java objects to XML.

- Serialization is the process of converting an object in memory into a stream of data, and

vice versa. Serialization is a convenient way of storing objects on disk or sending them

over a network. Object serialization based on serializable and externalizable interfaces

- In the case of JAXB, a set of binding classes is generated using a schema compiler. The

classes manage marshalling, meaning translating Java objects to XML and back again.

Here is a brief summary of some of benefits of JAXB:

o Valid data is guaranteed. Marshalling is based on a schema, which constrains

188

the structure of the XML.

o JAXB is faster and requires less memory when compared with DOM. DOM
includes a lot of functionality for manipulating arbitrary documents.

o JAXB is relatively easy to use. All you need to do is supply a schema and
generate binding classes using a schema compiler. From there, reading,

writing, and modifying XML is simply a matter of a few method calls

o JAXB applications are extensible. The generated classes can be used as is, or
they can be subclassed for reusability and added functionality

Data Binding

- A class and a schema perform similar functions. Classes describe Java objects, whereas

schemas describe XML documents. An object is an instance of a class, and a document

follows a schema. The diagram in the figure shown in next page, illustrates the

relationships between schemas, classes, documents, and objects.

- If we have a schema, perhaps in the form of a DTD, we can automatically generate

classes that translate between objects and documents

Figure : binding relationship

- One way to define a binding is to generate one Java class for every element in a schema.

- Attributes within an element are mapped to String fields. Content within an element is a

little more complicated. The following Table summarizes how the content is mapped

within a Java class.
- Default Content Binding

Content Type Field Type

PCDATA String

Fixed number of elements References to sub-element types

Varying number of elements java.util.List

Any Can be defined using additional information described
in a binding schema

9. PARSING XMLUSING SAX
- Simple API for XML (SAX) can only be used for parsing existing documents, but

cannot be used for creating xml documents

189

- SAX is an event-based API. It provides a framework for defining event listener or

handler. Unlike a DOM parser, a SAX parser creates no parse tree

- Instead of loading an entire document into memory all at once, SAX parsers read

documents and notify a client program when elements, text, comments, and other

data of interest are found. SAX parsers send you events continuously, telling you what

was found next

- An applications using SAX receive event notifications about the XML document being

processed an element, and attribute, at a time in sequential order starting at the top of the

document, and ending with the closing of the ROOT element

- SAX Parser does the following for the client application:

o Reads an XML document from top to bottom, recognizing the tokens that
make up a well-formed XML document

o Tokens are processed in the same order that they appear in the document
o Reports the application program the nature of tokens that the parser has

encountered as they occur

o The application program provides an "event" handler that must be registered
with the parser

o As the tokens are identified, callback methods in the handler are invoked
with the relevant information

10. SAX VERSIONS
SAX 1.0

- The first version, SAX 1.0, was released in May 1998, It provided the basic functionality

needed to read elements, attributes, text, and to manage errors. There was also some

DTD support.

SAX 2.0

- The current version, SAX 2.0, was released two years later in May 2000. Many of the

SAX 2.0 interfaces are departures from SAX 1.0. Older interfaces are included, but

deprecated, for backward compatibility

- SAX 2.0 also includes support for namespaces and extensibility through features and
properties.

11. SAX Vs DOM

- SAX is, in many ways, much simpler than DOM. DOM is an in-memory tree structure

of an XML document or document fragment.
- DOM is a natural object model of an XML document, but it’s not always practical.

Large documents can take up a lot of memory
DOM SAX

The DOM parses XML in space SAX parses XML in time

Tree based API Event based API

190

DOM parser loads whole XML
document in memory

SAX only loads a small part of the XML file
in memory, based on event notification

It is not suitable for large volume of

document, since it loads the entire xml
document

Good for very large documents, since it

loads only portion of xml document

DOM can be used for creating xml
document

SAX cannot be used for creating xml
document

DOM contain many interfaces, and

each interfaces containing many

methods

SAX parser tends to smaller than DOM

implementation

There is formal specification for DOM There is no formal specification for SAX

You cannot process documents larger
than available system memory

You can process documents larger than
available system memory

DOM stands for Document object
model

SAX stands for Simple API for XML

DOM is read and write parser SAX is a read-only parser

DOM is slower than SAX, because

you have to wait for the entire
document to be loaded

SAX can be faster, because you don’t have

to wait for the entire document to be loaded

DOM support random access No support for random access

12. SAX PACKAGES
- The SAX 2.0 API is comprised of two standard packages and one extension package.

The standard packages are org.xml.sax and org.xml.helpers.

org.xml.sax package

- The org.xml.sax package contains the basic classes, interfaces, and exceptions

needed for parsing documents

- A summary of the org.xml.sax package is shown in the following Table:

Name Description

Interfaces

Attributes Interface for a list of XML attributes.

AttributeList Deprecated. This interface has been replaced by the

SAX2 Attributes interface, which includes namespace

support

ContentHandler Receives notification of the logical content of a
document.

DocumentHandler Deprecated. This interface has been replaced by the

SAX2 ContentHandler interface, which includes
namespace support.

ContentHandler interface, which includes namespace support.

DTDHandler Receives notification of basic DTD-related events.

191

EntityResolver Basic interface for resolving entities.

ErrorHandler Basic interface for SAX error handlers.

Locator Interface for associating a SAX event with a document
location.

Parser Deprecated. This interface has been replaced by the

SAX2 XMLReader interface, which includes
namespace support.

XMLFilter Interface for an XML filter.

XMLReader Interface for reading an XML document using callbacks

Classes

HandlerBase Deprecated. This class works with the deprecated
DocumentHandler interface.

InputSource A single input source for an XML entity

Exceptions

SAXException Encapsulates a general SAX error or warning.

SAXNotRecognizedException Exception class for an unrecognized identifier.

SAXNotSupportedException Exception class for an unsupported operation.

SAXParseException Encapsulates an XML parse error or warning

ContentHandler Methods

Descriptions of all the methods defined in ContentHandler are provided in the following

Table:
Method Description

characters() Receives notification of character data

endDocument() Receives notification of the end of a document

endElement() Receives notification of the end of an element

endPrefixMapping() Ends the scope of a prefix-URI mapping

ignorableWhitespace() Receives notification of ignorable whitespace in element
content

processingInstruction() Receives notification of a processing instruction

setDocumentLocator() Receives an object for locating the origin of SAX document
events

skippedEntity() Receives notification of a skipped entity

startDocument() Receives notification of the beginning of a document

startElement() Receives notification of the beginning of an element

startPrefixMapping() Begins the scope of a prefix-URI namespace mapping

Attributes Interface methods

- This interface specifies methods for processing the attributes connected to an element.

• int getLength() - Returns number of attributes.

• String getQName(int index)

192

• String getValue(int index)

• String getValue(String qname)

The org.xml.sax.helpers package

- This package contains additional classes that can simplify some of your coding and make

it more portable. You will find a number of adapters that implement many of the handler

interfaces, so you don’t need to fill in all the methods defined in the interfaces. Factory

classes provide a mechanism for obtaining a parser independent of the implementation
- A summary of the org.xml.sax.helpers package is shown in the following Table:The

org.xml.sax.helpers Package

Class Description

AttributeListImpl Deprecated. This class implements a deprecated interface,

AttributeList that has been replaced by Attributes, which is
implemented in the AttributesImpl helper class.

AttributesImpl Default implementation of the Attributes interface.

DefaultHandler Default base class for SAX2 event handlers.

LocatorImpl Provides an optional convenience implementation of Locator.

NamespaceSupport Encapsulate namespace logic for use by SAX drivers.

ParserAdapter Adapts a SAX1 Parser as a SAX2 XMLReader.

ParserFactory Deprecated. This class works with the deprecated Parser
interface.

XMLFilterImpl Base class for deriving an XML filter.

XMLReaderAdapter Adapts a SAX2 XMLReader as a SAX1 Parser.

XMLReaderFactory Factory for creating an XML reader

The org.xml.sax.ext package

- It is an extension package that is not shipped with all implementations. It contains two

handler interfaces for capturing declaration and lexical events
- A summary of the org.xml.sax.ext package is shown in the following Table:

The org.xml.sax.ext Package
Interface Description

DeclHandler SAX2 extension handler for DTD declaration events

LexicalHandler SAX2 extension handler for lexical events

13. WORKING WITH SAX
Let’s look at a simple example in which we read an XML document from disk and print

out some of the contents

In this example, we will print out just the element names and the text between the

elements. The source code for SAXDemo.java is shown in the following List:

import java.io.*;

import org.xml.sax.*;

193

import org.xml.sax.helpers.*;

import javax.xml.parsers.*;

public class SAXDemo extends DefaultHandler

{

public void startDocument()

{

System.out.println(“***Start of Document***”);

}

public void endDocument()

{

System.out.println(“***End of Document***”);

}

public void startElement(String uri, String localName,String qName, Attributes

attributes)

{

System.out.print(“<” + qName);

int n = attributes.getLength();

for (int i=0; i<n; i+=1)

System.out.print(“ “ + attributes.getQName(i) +

“=’” + attributes.getValue(i) + “‘“);

System.out.println(“>”);

}

public void characters(char[] ch, int start, int length)

{

System.out.println(new String(ch, start, length).trim());

}

public void endElement(String namespaceURI, String localName,String qName)

throws SAXException

{

System.out.println(“</” + qName + “>”);

}

public static void main(String args[]) throws Exception

{

if (args.length != 1)

{

System.err.println(“Usage: java SAXDemo <xml-

file>”); System.exit(1);

}

SAXDemo handler = new SAXDemo();

SAXParserFactory factory =

194

SAXParserFactory.newInstance(); SAXParser parser =

factory.newSAXParser(); parser.parse(new File(args[0]),

handler);

}

}

- Our class extends DefaultHandler in order to capture events. DefaultHandler is a

convenience adapter class defined in org.xml.sax.helpers. It implements four

interfaces: EntityResolver, DTDHandler, ContentHandler, and ErrorHandler.

DefaultHandler defines empty stub methods for all the events defined in all four

interfaces

- In order to register our handler, we can create a SAXParser instance and call its parse(

) method with a file and handler instance. The code to do this is located in the main()

method of the example

- In the example, we have defined five methods: startDocument(), endDocument(),

startElement(), characters(), and endElement(). These methods will be called in

response to related events, and they are defined in the ContentHandler interface

- Once the parse() method is called, our methods will be called in response to events until

the end of input is reached or an error occurs.

- A sample XML document, library.xml, is used for testing the above program:

<?xml version=”1.0” encoding=”UTF-8”?>

<!-- A short list of books in a library -->

<!DOCTYPE library SYSTEM “library.dtd”>

<library>

<fiction>

<book author=”Herman Melville”>Moby Dick</book>

</fiction>

<biography>

<book author=”William Manchester”>

The Last Lion, Winston Spencer

Churchill

</book>

</biography>

</library>

To execute SAXDemo, you can enter the following command:

D:\SAX>java SAXDemo library.xml

Start of Document

<library>

<fiction>

<book author=’Herman

Melville’> Moby Dick

</book>

</fiction>

195

<biography>

<book author=’William Manchester’>

The Last Lion, Winston Spencer

Churchill

</book>

</biography>

</library>

End of Document

Validation
- SAX parsers come in two varieties: validating parsers and nonvalidating parsers.

- Validating parsers can determine whether an XML document is valid based on a

Document Type Definition (DTD) or Schema
- The SAX parser shipped with Apache Xerces is a validating parser.

- In order to use validation, you must turn it on by setting the validation feature to true. If

you attempt to turn on validation with a nonvalidating parser, a

SAXNotSupportedException will be thrown. If the parser does not recognize the feature,

a SAXNotRecognizedException will be thrown. This helps in determining whether you

mistyped the feature name

- Consider the following library.dtd file for validating library.xml file:

<?xml version=”1.0” encoding=”US-ASCII”?>

<!ELEMENT library (fiction|biography)*>

<!ELEMENT fiction (book)+>

<!ELEMENT biography (book)+>

<!ELEMENT book (#PCDATA)>

<!ATTLIST book author CDATA #REQUIRED>

- In the following example, we will write a simple program to validate an XML document.

In this example, the DTD will be located on the local hard drive in the same directory as

the document itself.
- The source code for SAXValidator.java is shown in the following Listing:

import java.io.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class SAXValidator extends DefaultHandler

{

private boolean valid; private

boolean wellFormed; public

SAXValidator() {

valid = true;

wellFormed = true;

196

}

public void error(SAXParseException e)

{ valid = false;

}

public void fatalError(SAXParseException e)

{ wellFormed = false;

}

public void warning(SAXParseException

e) { valid = false;

}

public boolean isValid()

{ return valid;

}

public boolean isWellFormed()

{ return wellFormed;

}

public static void main(String args[]) throws Exception

{ if (args.length != 1) {

System.out.println(“Usage: java SAXValidate <xml-

file>”); System.exit(1);

}

XMLReader parser = XMLReaderFactory.createXMLReader(

“org.apache.xerces.parsers.SAXParser”);

parser.setFeature(“http://xml.org/sax/features/validation”, true);

SAXValidator handler = new SAXValidator();

parser.setContentHandler(handler);

parser.setErrorHandler(handler);

parser.parse(new InputSource(new FileReader(args[0])));

if (!handler.isWellFormed())

System.out.println(“Document is NOT well

formed.”); if (!handler.isValid())

System.out.println(“Document is NOT

valid.”); if (handler.isWellFormed() &&

handler.isValid()) {

System.out.println(“Document is well formed and valid.”);

}

}

}

To execute SAXValidate, you can enter the following command:

D:\SAX>java SAXValidate library.xml

Document is NOT valid.

197

14. HANDLING ERRORS
- The Locator interface can give us the parse position where error occurred within a

ContentHandler method.

- The position information includes line number and column number. It is important to

note that the Locator object should not be used in any other methods, including

ErrorHandler methods.

- Fortunately, ErrorHandler methods supply a SAXParseException object that can also

give us position information
- The source code for SAXErrors.java is shown in the following Listing:

import java.io.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class SAXErrors extends DefaultHandler

{ private Locator locator;

public void startDocument() {

System.out.println(“***Start of Document***”);

}

public void endDocument() {

System.out.println(“***End of Document***”);

}

public void setDocumentLocator(Locator inLocator)

{ System.out.println(“***Got Locator***”);

locator = inLocator;

int line = locator.getLineNumber();

int column = locator.getColumnNumber();

System.out.println(“Line “ + line + “, column “ +

column);

}

public void printLocation(SAXParseException

e) { int line = e.getLineNumber();

int column = e.getColumnNumber();

System.out.println(“Line “ + line + “, column “ +

column);

}

public void error(SAXParseException e)

{ printLocation(e);

System.out.println(“Recoverable error: “ + e.getMessage());

Exception ex = e.getException();

}

public void fatalError(SAXParseException e)

{ printLocation(e);

System.out.println(“Non-recoverable error: “ + e.getMessage());

198

}

public void warning(SAXParseException e)

{ printLocation(e);

System.out.println(“Warning: “ + e.getMessage());

}

public static void main(String args[]) throws Exception

{ if (args.length != 1) {

System.err.println(“Usage: java SAXErrors <xml-

file>”); System.exit(1);

}

XMLRe0ader parser = XMLReaderFactory.createXMLReader(

“org.apache.xerces.parsers.SAXParser”);

parser.setFeature(“http://xml.org/sax/features/validation”, true);

SAXErrors handler = new SAXErrors();

parser.setContentHandler(handler);

parser.setErrorHandler(handler);

parser.parse(new InputSource(new FileReader(args[0])));

}

}

- The ContentHandler method setDocumentLocator() is added to obtain a Locator

instance. Detailed information is printed in the error methods
- In library.xml file change <fiction> into <fictions>, then save the xml file

- Now, To execute SAXValidate, you can enter the following command:

D:\SAX>java SAXErrors library.xml

***Got

Locator*** Line

1, column 1

***Start of

Document*** Line 4,

column 12

Recoverable error: Element type “fictions” must be declared.

End of Document

- As expected, a validation error occurs at line 4. The fictions tag should be fiction\

LEXICAL EVENTS
- DefaultHandler does not handle CDATA, DTD references, comment, entity,etc.

- We can receive these events as well using an extension interface called

LexicalHandler. LexicalHandler is part of the org.xml.sax.ext package

- The methods in the LexicalHandler interface are listed below:

199

-
Method Description

comment() Receives notification when comment found while processing xml
document

endCDATA() Receives notification when the end of a CDATA section encountered

endDTD() Receives notification when the end of DTD declarations encountered

endEntity() Receives notification when the end of an entity encountered

startCDATA() Receives notification when the start of a CDATA section encountered

startDTD() Receives notification when the start of DTD declarations encountered

startEntity() Receives notification when the beginning of some internal and external
XML entities encountered

- The source code for SAXLexical.java is shown below:

public class SAXLexical extends DefaultHandler implements

LexicalHandler { public SAXLexical() {}

public void startDTD(String name, String publicId,String systemId) throws

SAXException {

System.out.print(“*** Start DTD, name “ +

name);

}

public void endDTD() throws SAXException

{ System.out.println(“*** End DTD

***”);

}

public void startEntity(String name) throws SAXException {

System.out.println(“*** Start Entity “ + name + “ ***”);

}

public void endEntity(String name) throws SAXException {

System.out.println(“*** End Entity “ + name + “ ***”);

}

public void startCDATA() throws SAXException {

System.out.println(“*** Start CDATA ***”);

}

public void endCDATA() throws SAXException {

System.out.println(“*** End CDATA ***”);

}

public void comment(char[] ch, int start, int length) throws SAXException

{ System.out.println(“*** Comment Encountered***”);

}

parser.setFeature(“http://xml.org/sax/features/validation”, true);

 SAXLexical handler = new SAXLexical(); parser.setContentHandler(handler);

parser.setProperty(“http://xml.org/sax/properties/lexical-handler”,handler);

200

parser.parse(new InputSource(new FileReader(args[0])));

}

}

- Now, To execute SAXValidate, you can enter the following command:

D:\SAX>java SAXLexical library.xml

*** Comment Encountered***

*** Start DTD, name library SYSTEM library.dtd ***

*** Start Entity [dtd] ***

*** End Entity [dtd] ***

*** End DTD ***

public static void main(String args[])

throws Exception { if (args.length

!= 1) {

System.err.println(“Usage: java

SAXLexical <xml-file>”);

System.exit(1);

}

XMLReader parser = XMLReaderFactory.createXMLReader(

“org.apache.xerces.parsers.SAXParser”);

201

IMPORTANT QUESTIONS

1. What is the difference between Document Type Declaration (DOCTYPE) and

Document Type Definition (DTD)?

 A Document Type Declaration (DOCTYPE) and a DTD serve very different, although

related purposes. The DOCTYPE is used to identify and name the XML content,

whereas the DTD is used to validate the metadata contained within.

2. Why should we avoid XML-attributes and use sub-element in xml definition?(or)

What is the different between attribute and sub-element?

 Generally, attributes are used to store Metadata, where as sub-elements are suer to store

actual data

 Attributes cannot contain multiple values, whereas child elements can have multiple

values.

 Attributes are not easily expandable. If you want to change in attribute's vales in future,

it may be complicated.

 Attributes cannot describe structure, but child elements can.

 Attributes are more difficult to be manipulated by program code.

 Attributes values are not easy to test against a DTD

3. Is XML declaration is processing instruction?

• It seems like yes, but Xml declaration is not processing instruction

• Because, it provides instruction to the parser, but not to the application

4. Difference between XML declaration and Processing Instruction?

• The difference between PIs and XML declaration are listed below

XML declaration Processing Instruction(PIs)

XML declaration provides instruction to

 the parser, but not the to

application

PIs are used to embed application specific

instructions into your xml documents

Xml declaration must always be the

first line of your xml file

But, you can put PIs any where in the Xml

document

Example:<?xml version="1.0"?> <?messageprocessor

“process complete” ?>

5. What is XML processor (or) Parser?

 It is a software module used to read xml documents and provides access to their

content and structure

202

 It is doing its work onbehalf of another module called the application

 Xml processors is more commonly called Parsers

6. Why do we need XML namespaces?

There are really two fundamental needs for namespaces:

- To disambiguate between two elements that happen to share the same name

- To group elements relating to a common idea together

7. What is the difference between URN and URL?

- URLs and URNs are both used to create are used to create XML Namespace URIs

URL URL

URL specifies the location of a

resource, and how it can be retrieved

the URN is simply a unique name, which

doesn’t tell you anything about how to

retrieve either the book itself or

information about book

8. What is Qualified Name (or) QName?

An element or attribute name with a prefi x is known as a Qualified Name, often

abbreviated to QName. The part after the prefi x is technically known as a Local

Name

9. What is the drawback attribute? (OR) compare attribute with child element?

 attributes cannot contain multiple values (child elements can)

 attributes are not easily expandable (for future changes)

 attributes cannot describe structures (child elements can)

 attributes are more difficult to manipulate by program code

10. In XML, the element can have what types of content?

In, XML the elements can have 4 content types:

 Text only – elements consists its content as text

o Example: <firstname>Kajendran</firstname>

 Element-only – elements consists entirely of nested elements

o Example

<name>

<firstname>Kajendran</firstname>

<middlename/>

<lastname>Krishnan</lastname>

</name>

 Mixed content – elements consist of combination of nested elements and text

<address>

<name>

<firstname>Kajendran</firstname>

<lastname>Krishnan</lastname>

203

</name>

11/20, valluvar street Saidapet west

</address>

 Empty content

o Example:<name firstname=”ram” lastname=”kumar” />

11. What is the benefits of an XML Editor than text editor?

- An XML editor will help prevent you from making errors, while typing xml file

- XML editors are similar to HTML editors (or any other programming editor) in that

they provide syntax highlighting which helps with readability when you're coding.

- They'll automatically insert a closing tag once you're added an opening tag

- A good XML editor should also provide validation - a way for you to validate that

the documents you create are well formed.

12. List some examples of XML Editors?

- XML Notepad

- XML Cooktop

- XML Pro

- XML Spy

- Liquid XML Studio

13. What is the difference between TreeWalker and NodeIterator interfaces?

The TreeWalker interface provides many of the same benefits as NodeIterator.
The main difference is that

NodeIterator TreeWalker

NodeIterator presents a list-oriented view TreeWalker presents a tree-oriented view

It allows

backward

you to move forward and In addition to forward and backward

movement, TreeWalker also allows you to
- move to the parent of a node

- move to one of its children
- move to a sibling

14. What is the difference between JDOM and DOM interfaces?

DOM JDOM

DOM is an interface-based API JDOM is a class-based API

No classes available in DOM specification,

only interfaces are given

There are classes that encapsulate

documents, elements, attributes, text, and so

on. This simplifies usage b minimizing
downcasts

DOM is a strict hierarchy based on a node,

which leads to lots of downcasts. Downcasts

add complexity to source code
and also reduce performance

No downcast involved,

improved performance

the leads to

204

DOM parse XML by itself JDOM does not parse XML by itself;

rather, it can build JDOM objects from a
DOM tree or a SAX parser

15. What is the drawback of SAX parser?

Drawback of SAX:

- SAX parsing is “single pass,” so you can’t back up to an earlier part of

the document any more than you can back up from a serial data stream.

- You have no random access at all. Handling parent/child relationships

can be more challenging

- SAX is read only parser, they do not provide ability to manipulate a

document or its structure
- There is no formal specification for SAX

16. What is the advantage SAX parser?

- SAX is an event-based API. It provides a framework for defining event

listener or handler

- SAX is best suitable for very large xml document, because instead of

loading an entire document into memory all at once, SAX parsers read

documents and notify a client program when elements, text, comments,

and other data of interest are found

17. Why do I need SAX?

- SAX is completely free, so it can be embedded in a larger application

without royalty fees or even copyright notices SAX is an event-based

API.

- Some SAX parsers can validate a document against a Document Type

Definition (DTD). Validating parsers can also tell you specifically

where validation has failed

18. List out some SAX parsers?

- The most commonly used parsers are

o Xerces from the Apache XML project

o Java API for XML Processing (JAXP) from Sun Microsystems

19. List out some DOM parsers?

A number of DOM implementations are available for Java. Two of the most

popular are

• Java APIs for XML Processing (JAXP), developed by Sun Microsystems

• Xerces developed as part of the Apache XML project

• JDOM

• List out some DOM parsers?

20. List out small DOM-like parsers for hand-held devices or PDAs?

• NanoXML - TinyXML - kXML

ISBN: 978-93-5493-336-3

Price: Rs. 450/-

ABOUT AUTHORS

John T Mesia Dhas received his Ph.D. in Computer Science and

Engineering from Vel Tech University, Chennai, India. He has 16 years of

Experience in the field of Education and Industry, currently he is working as

Associate Professor with Computer Science and Engineering Department of

T John Institute of Technology, Bangalore under VTU, India.

He is also doing researches in Software Engineering and Data Science

fields. He has published more than 25 research articles in conferences and

Journals.

T. S. Shiny Angel received her Ph.D. in Computer Science and

Engineering from SRM University, Chennai, India. She has 19 years of

Experience in the field of Education and Industry, currently she is working as

Assistant Professor Sr. Grade with Software Engineering Department of SRM

Institute of Science and Technology (formerly known as SRM University),

Chennai, Tamil Nadu, India.

She is also doing researches in Software Engineering, Machine Learning

and Data Analytics fields. She has published more than 45 research papers in

conferences and Journals.

ISBN: 978-93-5493-336-3

Price: Rs. 450/-

OTHER BOOKS

S. No Title ISBN

1 C LOGIC PROGRAMMING 978-93-5416-366-1

2

MODERN METRICS (MM): THE

FUNCTIONAL SIZE ESTIMATOR

FOR MODERN SOFTWARE

978-93-5408-510-9

3 PYTHON 3.7.1 Vol - I 978-93-5416-045-5

4 SOFTWARE SIZING APPROACHES 978-93-5437-820-1

5 DBMS PRACTICAL PROGRAMS 978-93-5437-572-9

6
SERVICE ORIENTED

ARCHITECTURE
978-93-5416-496-5

7

ANDROID APPLICATIONS

DEVELOPMENT PRACTICAL

APPROACH

978-93-5445-403-5

8
MOBILE APPLICATIONS

DEVELOPMENT

978-93-5445-406-6

9 XML HAND BOOK 978-93-5493-336-3

10
PARALLEL COMPUTING IN

ENGINEERING APPLICATIONS
978-93-5578-655-5

For free E-Books: jtmdhasres@gmail.com

